CONTENTSINTRODUCTION........................................................................................................................................ 3I. PROJECTIVITY AND INJECTIVITY IN ABSTRACT BICATEGORIES.............................................. 7§ 1. Categories and bicategories........................................................................................................... 7§ 2. Arrow notation and the duality principle......................................................................................... 10§ 3. Singletons........................................................................................................................................... 11§ 4. Projective and injective objects....................................................................................................... 12§ 5. Separators and generators............................................................................................................. 13§ 6. Free and direct objects..................................................................................................................... 10II. SOME SPECIAL BICATEGORIES....................................................................................................... 10§ 7. Table of examples............................................................................................................................. 10§ 8. Topological spaces........................................................................................................................... 10§ 9. Groups. Abelian groups. Modules over a ring.............................................................................. 25§ 10. Locally compact abelian groups.................................................................................................. 28§ 11. Boolean algebras. Compact spaces.......................................................................................... 29§ 12. Banach spaces. Linear topological spaces.............................................................................. 31§ 13. Two-norm spaces and linear spaces with mixed topology.................................................... 33APPENDIX.................................................................................................................................................. 38§ 14. Remarks on subobject and injections....................................................................................... 38§ 16. Tricategories................................................................................................................................... 41REFERENCES.......................................................................................................................................... 44
@book{bwmeta1.element.desklight-2c5c2dc5-5782-45c0-b156-c7853b8977b3, author = {Z. Semadeni}, title = {Projectivity, injectivity and duality}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1963}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-2c5c2dc5-5782-45c0-b156-c7853b8977b3} }
Z. Semadeni. Projectivity, injectivity and duality. GDML_Books (1963), http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-2c5c2dc5-5782-45c0-b156-c7853b8977b3/