Projectivity, injectivity and duality
Z. Semadeni
GDML_Books, (1963), p.

CONTENTSINTRODUCTION........................................................................................................................................ 3I. PROJECTIVITY AND INJECTIVITY IN ABSTRACT BICATEGORIES.............................................. 7§ 1. Categories and bicategories........................................................................................................... 7§ 2. Arrow notation and the duality principle......................................................................................... 10§ 3. Singletons........................................................................................................................................... 11§ 4. Projective and injective objects....................................................................................................... 12§ 5. Separators and generators............................................................................................................. 13§ 6. Free and direct objects..................................................................................................................... 10II. SOME SPECIAL BICATEGORIES....................................................................................................... 10§ 7. Table of examples............................................................................................................................. 10§ 8. Topological spaces........................................................................................................................... 10§ 9. Groups. Abelian groups. Modules over a ring.............................................................................. 25§ 10. Locally compact abelian groups.................................................................................................. 28§ 11. Boolean algebras. Compact spaces.......................................................................................... 29§ 12. Banach spaces. Linear topological spaces.............................................................................. 31§ 13. Two-norm spaces and linear spaces with mixed topology.................................................... 33APPENDIX.................................................................................................................................................. 38§ 14. Remarks on subobject and injections....................................................................................... 38§ 16. Tricategories................................................................................................................................... 41REFERENCES.......................................................................................................................................... 44

EUDML-ID : urn:eudml:doc:268377
@book{bwmeta1.element.desklight-2c5c2dc5-5782-45c0-b156-c7853b8977b3,
     author = {Z. Semadeni},
     title = {Projectivity, injectivity and duality},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1963},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-2c5c2dc5-5782-45c0-b156-c7853b8977b3}
}
Z. Semadeni. Projectivity, injectivity and duality. GDML_Books (1963),  http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-2c5c2dc5-5782-45c0-b156-c7853b8977b3/