CONTENTSPart I1. Introduction...................................................................................................................................................... 52. Preliminaries.................................................................................................................................................. 62.1. Notation........................................................................................................................................................ 62.2. Local preliminaries.................................................................................................................................... 63. The space ............................................................................................................................. 93.1. Generalities................................................................................................................................................. 93.2. Linear transformations of ............................................................................................... 103.3. Global measure.......................................................................................................................................... 114. Lattices and convex bodies.......................................................................................................................... 114.1. Lattices......................................................................................................................................................... 114.2. Convex bodies............................................................................................................................................. 135. An analogue of Minkowski’s convex body theorem................................................................................. 155.1. Convex body theorem................................................................................................................................ 155.2. Applications of theorem 2......................................................................................................................... 166. Successive minima....................................................................................................................................... 186.1. Preliminaries............................................................................................................................................... 186.2. The product of successive minima; an upper bound.......................................................................... 196.3. The product of successive minima; a lower bound............................................................................ 226.4. Applications to algebraic number theory................................................................................................ 247. T-adeles........................................................................................................................................................... 327.1. The general theory for T-adeles............................................................................................................... 327.2. Two special cases..................................................................................................................................... 35Part II1. Introduction ..................................................................................................................................................... 372. Topology in ................................................................................................................... 372.1. Two topologies on ........................................................................................................... 372.2. Comparison of the two topologies.......................................................................................................... 393. Compactness for lattices............................................................................................................................. 413.1. Two topologies on the lattice space....................................................................................................... 413.2. An important lemma................................................................................................................................... 433.3. An analogue of Mahler’s compactness theorem................................................................................. 444. The Chabauty topology................................................................................................................................. 455. T-adeles ......................................................................................................................................................... 47References.......................................................................................................................................................... 49
@book{bwmeta1.element.desklight-2aa54ff5-5312-4ac6-9218-f0bb02810352, author = {R. B. McFeat}, title = {Geometry of numbers in adele spaces}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1971}, zbl = {0229.10014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-2aa54ff5-5312-4ac6-9218-f0bb02810352} }
R. B. McFeat. Geometry of numbers in adele spaces. GDML_Books (1971), http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-2aa54ff5-5312-4ac6-9218-f0bb02810352/