CONTENTSIntroduction........................................................................................................................................................................................................... 5I. THE CAUCHY-DARBOUX PROBLEM IN FUNCTION CLASSES AND ......................... 71. Basic function classes ................................................................................................................................................................................... 72. The Cauchy-Darboux problem ...................................................................................................................................................................... 12II. Comparison of solutions ............................................................................................................................................................................... 183. The growth estimations.................................................................................................................................................................................. 184. Maximal solutions............................................................................................................................................................................................ 265. A theorem on extension of inequalities........................................................................................................................................................ 286. Effective estimation in the case , (b)................................................................................................................................................. 30III. COMPARATIVE CRITERIA OF EXISTENCE AND UNIQUENESS OP SOLUTIONS OF THE CAUCHY-DARBOUX PROBLEM...................................................................................................................................................................................... 357. Basic classes of comparative functions...................................................................................................................................................... 358. Existence and uniqueness of solutions of the Cauchy-Darboux problem............................................................................................ 429. Remarks on the continuous dependence of solutions on boundary data and on the second member........................................ 4710. Examples......................................................................................................................................................................................................... 49BIBLIOGRAPHICAL REMARKS.......................................................................................................................................................................... 66BIBLIOGRAPHY..................................................................................................................................................................................................... 68INDEX OF SYMBOLS............................................................................................................................................................................................ 74
@book{bwmeta1.element.desklight-1c2e6c49-e4cd-4c60-8976-0f2e56929ef0, author = {J. Kisy\'nski and A. Pelczar}, title = {Comparison of solutions and successive approximations in the theory of the equation $$\partial$^2z/$\partial$x$\partial$y = f(x, y, z, $\partial$z/$\partial$x, $\partial$z/$\partial$y)$ }, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1970}, zbl = {0219.35057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-1c2e6c49-e4cd-4c60-8976-0f2e56929ef0} }
J. Kisyński; A. Pelczar. Comparison of solutions and successive approximations in the theory of the equation $∂^2z/∂x∂y = f(x, y, z, ∂z/∂x, ∂z/∂y)$ . GDML_Books (1970), http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-1c2e6c49-e4cd-4c60-8976-0f2e56929ef0/