CONTENTSIntroduction................................................................................................................................................. 5PART I1. Axioms of Boolean algebra................................................................................................................. 62. Half-planes and their axioms.............................................................................................................. 73. The line.................................................................................................................................................... 84. Properties of the net ................................................................................................................. 105. Properties of the net ................................................................................................................. 126. Pseudopoints......................................................................................................................................... 157. The ordering of pseudopoints............................................................................................................. 188. The points............................................................................................................................................... 209. Continuity axiom..................................................................................................................................... 22PART II1. Axioms..................................................................................................................................................... 262. Definitions and corollaries................................................................................................................... 273. Convex of a set....................................................................................................................................... 284. Properties of relations of betweenness and of being parallel...................................................... 295. Hodograph.............................................................................................................................................. 336. Jaśkowski’s theorem............................................................................................................................ 37Inferences.................................................................................................................................................... 42
@book{bwmeta1.element.desklight-1090890f-fa00-4099-ba3b-c07e46509089, author = {A. \'Sniatycki}, title = {An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1968}, zbl = {0164.51202}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-1090890f-fa00-4099-ba3b-c07e46509089} }
A. Śniatycki. An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion. GDML_Books (1968), http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-1090890f-fa00-4099-ba3b-c07e46509089/