On the nonlinear Neumann problem with critical and supercritical nonlinearities
J. Chabrowski ; E. Tonkes
GDML_Books, (2003), p.

We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent. In the first part of this work it is assumed that the coefficients Q and h are at least continuous. Moreover Q is positive on Ω̅ and λ > 0 is a parameter. We examine the common effect of the mean curvature and the shape of the graphs of the coefficients Q and h on the existence of low energy solutions. In the second part of this work we consider the same problem with Q replaced by -Q. In this case the problem can be supercritical and the existence results depend on integrability conditions on Q and h.

EUDML-ID : urn:eudml:doc:286060
@book{bwmeta1.element.bwnjournal-rm-doi-10_4064-dm417-0-1,
     author = {J. Chabrowski and E. Tonkes},
     title = {On the nonlinear Neumann problem with critical and supercritical nonlinearities},
     series = {GDML\_Books},
     year = {2003},
     zbl = {1273.35125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-rm-doi-10_4064-dm417-0-1}
}
J. Chabrowski; E. Tonkes. On the nonlinear Neumann problem with critical and supercritical nonlinearities. GDML_Books (2003),  http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-rm-doi-10_4064-dm417-0-1/