On the classification of Markov chains via occupation measures
Hernández-Lerma, Onésimo ; Lasserre, Jean
Applicationes Mathematicae, Tome 27 (2000), p. 489-498 / Harvested from The Polish Digital Mathematics Library

We consider a Markov chain on a locally compact separable metric space X and with a unique invariant probability. We show that such a chain can be classified into two categories according to the type of convergence of the expected occupation measures. Several properties in each category are investigated.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:219291
@article{bwmeta1.element.bwnjournal-article-zmv27i4p489bwm,
     author = {On\'esimo Hern\'andez-Lerma and Jean Lasserre},
     title = {On the classification of Markov chains via occupation measures},
     journal = {Applicationes Mathematicae},
     volume = {27},
     year = {2000},
     pages = {489-498},
     zbl = {1001.60076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p489bwm}
}
Hernández-Lerma, Onésimo; Lasserre, Jean. On the classification of Markov chains via occupation measures. Applicationes Mathematicae, Tome 27 (2000) pp. 489-498. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p489bwm/

[000] [1] J. L. Doob, Measure Theory, Grad. Texts in Math. 143, Springer, New York, 1994.

[001] [2] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Math. Stud. 21, Van Nostrand, London, 1969.

[002] [3] O. Hernández-Lerma and J. B. Lasserre, Ergodic theorems and ergodic decompostion for Markov chains, Acta Appl. Math. 54 (1998), 99-119. | Zbl 1002.60559

[003] [4] O. Hernández-Lerma and J. B. Lasserre, Further criteria for positive Harris recurrence of Markov chains, Proc. Amer. Math. Soc., to appear. | Zbl 0970.60078

[004] [5] S. Horowitz, Transition probabilities and contractions of L, Z. Wahrsch. Verw. Gebiete 24 (1972), 263-274. | Zbl 0228.60028

[005] [5] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994. | Zbl 0784.58005

[006] [7] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, London, 1993. | Zbl 0925.60001

[007] [8] J. Neveu, Sur l'irréductibilité des chaînes de Markov, Ann. Inst. H. Poincaré 8 (1972), 249-254. | Zbl 0241.60049

[008] [9] T. V. Panchapagesan, Baire and σ-Borel characterizations of weakly compact sets in M(T), Trans. Amer. Math. Soc. 350 (1999), 4839-4847.

[009] [10] H. L. Royden, Real Analysis, 3rd ed., Macmillan, New York, 1988. | Zbl 0704.26006

[010] [11] K. Yosida, Functional Analysis, 6th ed., Grundlehren Math. Wiss. 123, Springer, Berlin, 1980. | Zbl 0435.46002