We consider the following problem: where Φ: Ω ⊂ → ℝ is an unknown function, Θ is an unknown constant and M, E are given parameters.
@article{bwmeta1.element.bwnjournal-article-zmv27i4p465bwm,
author = {Tadeusz Nadzieja and Andrzej Raczy\'nski},
title = {Radially symmetric solutions of the Poisson-Boltzmann equation with a given energy},
journal = {Applicationes Mathematicae},
volume = {27},
year = {2000},
pages = {465-473},
zbl = {0992.35041},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p465bwm}
}
Nadzieja, Tadeusz; Raczyński, Andrzej. Radially symmetric solutions of the Poisson-Boltzmann equation with a given energy. Applicationes Mathematicae, Tome 27 (2000) pp. 465-473. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p465bwm/
[000] [1] C. Bandle, Isoperimetric Inequalities and Applications, Monographs Stud. Math. 7, Pitman, New York, 1980. | Zbl 0436.35063
[001] [2] P. Biler, A. Krzywicki and T. Nadzieja, Self-interaction of Brownian particles coupled with thermodynamic processes, Rep. Math. Phys. 42 (1998), 359-372. | Zbl 1010.82028
[002] [3] Ya. I. Frenkel', Statistical Physics, Izdat. Akad. Nauk SSSR, Moscow, 1948 (in Russian).
[003] [4] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Grundlehren Math. Wiss. 224, Berlin, 2nd ed., 1983. | Zbl 0562.35001
[004] [5] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), 303-342. | Zbl 0485.35031
[005] [6] A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Appl. Math. (Warsaw) 21 (1991), 365-272. | Zbl 0756.35029
[006] [7] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. | Zbl 0777.35001
[007] [8] R. F. Streater, A gas of Brownian particles in stochastic dynamics, J. Statist. Phys. 88 (1997), 447-469. | Zbl 0939.82026