Convergence rates of orthogonal series regression estimators
Popiński, Waldemar
Applicationes Mathematicae, Tome 27 (2000), p. 445-454 / Harvested from The Polish Digital Mathematics Library

General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x)=E(Y | X = x) are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Yi,Xi), i=1,...,n, where XiAd have marginal distribution with density ϱL1(A) and Var( Y | X = x) is bounded on A. Convergence rates of the errors EX(f(X)-f^N(X))2 and f-f^N for the estimator f^N(x)=k=1Nc^kek(x), constructed using an orthonormal system ek, k=1,2,..., in L2(A) are obtained.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:219287
@article{bwmeta1.element.bwnjournal-article-zmv27i4p445bwm,
     author = {Waldemar Popi\'nski},
     title = {Convergence rates of orthogonal series regression estimators},
     journal = {Applicationes Mathematicae},
     volume = {27},
     year = {2000},
     pages = {445-454},
     zbl = {0992.62040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p445bwm}
}
Popiński, Waldemar. Convergence rates of orthogonal series regression estimators. Applicationes Mathematicae, Tome 27 (2000) pp. 445-454. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p445bwm/

[000] [1] L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence, J. Bernoulli Soc. 4 (1998), 329-375. | Zbl 0954.62033

[001] [2] D. D. Cox, Approximation of least squares regression on nested subspaces, Ann. Statist. 16 (1988), 713-732. | Zbl 0669.62047

[002] [3] L. Györfi and H. Walk, On the strong universal consistency of a series type regression estimate, Math. Methods Statist. 5 (1996), 332-342. | Zbl 0874.62048

[003] [4] J. Z. Huang, Projection estimation in multiple regression with application to functional ANOVA models, Ann. Statist. 26 (1998), 242-272. | Zbl 0930.62042

[004] [5] G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New York, 1966. | Zbl 0153.38901

[005] [6] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687. | Zbl 0818.62041

[006] [7] P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10 (1999), 51-80. | Zbl 1053.65506

[007] [8] W. Popiński, On least squares estimation of Fourier coefficients, and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102. | Zbl 0789.62032

[008] [9] W. Popiński, Consistency of trigonometric and polynomial regression estimators, ibid. 25 (1998), 73-83. | Zbl 0895.62047

[009] [10] W. Popiński, A note on orthogonal series regression function estimators, ibid. 26 (1999), 281-291. | Zbl 0992.62039

[010] [11] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. | Zbl 0649.62034

[011] [12] C. J. Stone, Optimal global rates of convergence for nonparametric regression, Ann. Statist. 10 (1982), 1040-1053. | Zbl 0511.62048

[012] [13] G. Viennet, Least-square estimation for regression on random design for absolutely regular observations, Statist. Probab. Lett. 43 (1999), 13-23. | Zbl 0933.62034