The problems of minimax mutual prediction are considered for binomial and multinomial random variables and for sums of limited random variables with unknown distribution. For the loss function being a linear combination of quadratic losses minimax mutual predictors are determined where the parameters of predictors are obtained by numerical solution of some equations.
@article{bwmeta1.element.bwnjournal-article-zmv27i4p437bwm, author = {Stanis\l aw Trybu\l a}, title = {Minimax mutual prediction}, journal = {Applicationes Mathematicae}, volume = {27}, year = {2000}, pages = {437-444}, zbl = {1043.62018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p437bwm} }
Trybuła, Stanisław. Minimax mutual prediction. Applicationes Mathematicae, Tome 27 (2000) pp. 437-444. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p437bwm/
[000] [1] J. L. Hodges and E. L. Lehmann, Some problems in minimax point estimation, Ann. Math. Statist. 21 (1950), 182-191. | Zbl 0038.09802
[001] [2] E. G. Phadia, Minimax estimation of cumulative distribution functions, Ann. Statist. 1 (1973), 1149-1157. | Zbl 0289.62031
[002] [3] S. Trybuła, Some problems of simultaneous minimax estimation, Ann. Math. Statist. 29 (1958), 245-253. | Zbl 0087.14201
[003] [4] M. Wilczyński, Minimax estimation for multinomial and multivariate hypergeometric distribution, Sankhyā, Ser. A 47 (1985), 128-132. | Zbl 0575.62012