Minimax mutual prediction
Trybuła, Stanisław
Applicationes Mathematicae, Tome 27 (2000), p. 437-444 / Harvested from The Polish Digital Mathematics Library

The problems of minimax mutual prediction are considered for binomial and multinomial random variables and for sums of limited random variables with unknown distribution. For the loss function being a linear combination of quadratic losses minimax mutual predictors are determined where the parameters of predictors are obtained by numerical solution of some equations.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:219286
@article{bwmeta1.element.bwnjournal-article-zmv27i4p437bwm,
     author = {Stanis\l aw Trybu\l a},
     title = {Minimax mutual prediction},
     journal = {Applicationes Mathematicae},
     volume = {27},
     year = {2000},
     pages = {437-444},
     zbl = {1043.62018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p437bwm}
}
Trybuła, Stanisław. Minimax mutual prediction. Applicationes Mathematicae, Tome 27 (2000) pp. 437-444. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p437bwm/

[000] [1] J. L. Hodges and E. L. Lehmann, Some problems in minimax point estimation, Ann. Math. Statist. 21 (1950), 182-191. | Zbl 0038.09802

[001] [2] E. G. Phadia, Minimax estimation of cumulative distribution functions, Ann. Statist. 1 (1973), 1149-1157. | Zbl 0289.62031

[002] [3] S. Trybuła, Some problems of simultaneous minimax estimation, Ann. Math. Statist. 29 (1958), 245-253. | Zbl 0087.14201

[003] [4] M. Wilczyński, Minimax estimation for multinomial and multivariate hypergeometric distribution, Sankhyā, Ser. A 47 (1985), 128-132. | Zbl 0575.62012