Nonzero-sum semi-Markov games with countable state spaces
Połowczuk, Wojciech
Applicationes Mathematicae, Tome 27 (2000), p. 395-402 / Harvested from The Polish Digital Mathematics Library

We consider nonzero-sum semi-Markov games with a countable state space and compact metric action spaces. We assume that the payoff, mean holding time and transition probability functions are continuous on the action spaces. The main results concern the existence of Nash equilibria for nonzero-sum discounted semi-Markov games and a class of ergodic semi-Markov games with the expected average payoff criterion.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:219282
@article{bwmeta1.element.bwnjournal-article-zmv27i4p395bwm,
     author = {Wojciech Po\l owczuk},
     title = {Nonzero-sum semi-Markov games with countable state spaces},
     journal = {Applicationes Mathematicae},
     volume = {27},
     year = {2000},
     pages = {395-402},
     zbl = {1050.91012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p395bwm}
}
Połowczuk, Wojciech. Nonzero-sum semi-Markov games with countable state spaces. Applicationes Mathematicae, Tome 27 (2000) pp. 395-402. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i4p395bwm/

[000] [1] E. Altman, Non zero-sum stochastic games in admission, service and routing control in queueing systems, Queueing Systems Theory Appl. 23 (1996), 259-279. | Zbl 0877.90097

[001] [2] E. Altman and A. Hordijk, Zero-sum Markov games and worst-case optimal control of queueing systems, ibid. 21 (1995), 415-447. | Zbl 0859.90141

[002] [3] E. Altman, A. Hordijk and F. M. Spieksma, Contraction conditions for average and α-discount optimality in countable state Markov games with unbounded rewards, Math. Oper. Res. 22 (1997), 588-618. | Zbl 0887.90190

[003] [4] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 1979. | Zbl 0471.93002

[004] [5] V. S. Borkar and M. K. Ghosh, Denumerable state stochastic games with limiting average payoff, J. Optim. Theory Appl. 76 (1993), 539-560. | Zbl 0797.90128

[005] [6] A. Federgruen, On n-person stochastic games with denumerable state space, Adv. Appl. Probab. 10 (1978), 452-471. | Zbl 0411.93031

[006] [7] A. Federgruen and H. C. Tijms, The optimality equation in average cost denumerable state semi-Markov decision problems, recurrency conditions and algorithms, J. Appl. Probab. 15 (1978), 356-373. | Zbl 0386.90060

[007] [8] I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. | Zbl 0046.12103

[008] [9] A. Hordijk, Dynamic Programming and Markov Potential Theory, Math. Centrum, Amsterdam, 1977.

[009] [10] M. Kurano, Semi-Markov decision processes and their applications in replacement models, J. Oper. Res. Soc. Japan 28 (1985), 18-30. | Zbl 0564.90090

[010] [11] A. K. Lal and S. Sinha, Zero-sum two-person semi-Markov games, J. Appl. Probab. 29 (1992), 56-72. | Zbl 0761.90111

[011] [12] S. P. Meyn and R. L. Tweedie, Computable bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 4 (1994), 981-1011. | Zbl 0812.60059

[012] [13] A. S. Nowak, Some remarks on equilibria in semi-Markov games, this issue, 385-394. | Zbl 1050.91010

[013] [14] A. S. Nowak, Sensitive equilibria for ergodic stochastic games with countable state spaces, Math. Methods Oper. Res. 50 (1999), 65-76. | Zbl 0963.91011

[014] [15] A. S. Nowak and K. Szajowski, Nonzero-sum stochastic games, Ann. Internat. Soc. Dynamic Games 4 (1999), 297-342. | Zbl 0940.91014

[015] [16] O. Passchier, The Theory of Markov Games and Queueing Control, Ph.D. thesis, Dept. Math. and Computer Sci., Leiden Univ., 1996. | Zbl 0909.90285

[016] [17] S. M. Ross, Applied Probability Models with Optimization Applications, Holden Day, San Francisco, 1970. | Zbl 0213.19101

[017] [18] H. Royden, Real Analysis, MacMillan, New York, 1968. | Zbl 0197.03501

[018] [19] L. I. Sennott, Average cost semi-Markov decision processes and the control of queueing systems, Probab. Engnrg. Inform. Sci. 3 (1989), 247-272. | Zbl 1134.60408

[019] [20] L. I. Sennott, Nonzero-sum stochastic games with unbounded costs: discounted and average cost cases, Z. Oper. Res. 40 (1994), 145-162. | Zbl 0826.90145