The two-dimensional linear relation in the errors-in-variables model with replication of one variable
Czapkiewicz, Anna ; Dawidowicz, Antoni
Applicationes Mathematicae, Tome 27 (2000), p. 335-342 / Harvested from The Polish Digital Mathematics Library

We present a two-dimensional linear regression model where both variables are subject to error. We discuss a model where one variable of each pair of observables is repeated. We suggest two methods to construct consistent estimators: the maximum likelihood method and the method which applies variance components theory. We study asymptotic properties of these estimators. We prove that the asymptotic variances of the estimators of regression slopes for both methods are comparable.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:219277
@article{bwmeta1.element.bwnjournal-article-zmv27i3p335bwm,
     author = {Anna Czapkiewicz and Antoni Dawidowicz},
     title = {The two-dimensional linear relation in the errors-in-variables model with replication of one variable},
     journal = {Applicationes Mathematicae},
     volume = {27},
     year = {2000},
     pages = {335-342},
     zbl = {0990.62053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i3p335bwm}
}
Czapkiewicz, Anna; Dawidowicz, Antoni. The two-dimensional linear relation in the errors-in-variables model with replication of one variable. Applicationes Mathematicae, Tome 27 (2000) pp. 335-342. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i3p335bwm/

[000] J. Bartoszewicz (1989), Lectures in Mathematical Statistics, PWN, Warszawa (in Polish). | Zbl 0694.46044

[001] O. Bunke and H. Bunke (1989), Non-Linear Regression, Functional Relationships, and Robust Methods, Wiley, New York. | Zbl 0697.62051

[002] A. Czapkiewicz (1999), On estimation of parameters in the bivariate linear errors-in-variables model, Appl. Math. (Warsaw) 25, 401-410. | Zbl 0992.62061

[003] N. R. Cox (1976), The linear structural relation for several groups of data, Biometrika 63, 231-237. | Zbl 0338.62043

[004] G. R. Dolby (1976), The ultrastructural relation: A synthesis of the functional and structural relations, Biometrika 63, 39-50. | Zbl 0355.62065

[005] W. A. Fuller (1987), Measurement Error Models, Wiley, New York. | Zbl 0800.62413

[006] S. Gnot (1991), Estimation of Variance Components in Linear Models, Wyd. Naukowo-Techniczne, Warszawa (in Polish). | Zbl 0567.62057

[007] M. G. Kendall and A. Stuart (1979), The Advanced Theory of Statistics, Vol. 2, Griffin, London. | Zbl 0416.62001

[008] E. L. Lehmann (1983), Theory of Point Estimation, Wiley, New York. | Zbl 0522.62020

[009] A. Olsen, J. Seely and D. Birkes (1976), Invariant quadratic unbiased estimation for two variance components, Ann. Statist. 4, 878-890. | Zbl 0344.62060

[010] C. R. Rao and J. Kleffe (1988), Estimation of Variance Components and Applications, North-Holland Ser. Statist. Probab. 3, North-Holland, Amsterdam. | Zbl 0645.62073

[011] O. Reiersol (1950), Identifiability of a linear relation between variables which are subject to error, Econometrica 18, 575-589.