The Fujita type global existence and blow-up theorems are proved for a reaction-diffusion system of m equations (m>1) in the form with nonnegative, bounded, continuous initial values and positive numbers . The dependence on of the length of existence time (its finiteness or infinitude) is established.
@article{bwmeta1.element.bwnjournal-article-zmv27i2p203bwm, author = {Joanna Renc\l awowicz}, title = {Global existence and blow-up for a completely coupled Fujita type system}, journal = {Applicationes Mathematicae}, volume = {27}, year = {2000}, pages = {203-218}, zbl = {0994.35055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i2p203bwm} }
Rencławowicz, Joanna. Global existence and blow-up for a completely coupled Fujita type system. Applicationes Mathematicae, Tome 27 (2000) pp. 203-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i2p203bwm/
[000] [EH] M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differential Equations 89 (1991), 176-202. | Zbl 0735.35013
[001] [EL] M. Escobedo and H. A. Levine, Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal. 129 (1995), 47-100. | Zbl 0822.35068
[002] [F1] H. Fujita, On the blowing up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 13 (1966), 109-124.
[003] [F2] H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, in: Proc. Sympos. Pure Math. 18, Amer. Math. Soc., 1970, 105-113.
[004] [R] J. Rencławowicz, Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations, Appl. Math. (Warsaw) 25 (1998), 313-326. | Zbl 1002.35070