Sufficient conditions are given for the global Pareto solution of the multicriterial optimization problem to be in a given convex subset of the domain. In the case of maximizing real valued-functions, the conditions are sufficient and necessary without any convexity type assumptions imposed on the function. In the case of linearly scalarized vector-valued functions the conditions are sufficient and necessary provided that both the function is concave and the scalarization is increasing with respect to the cone generating the preference relation.
@article{bwmeta1.element.bwnjournal-article-zmv26i4p383bwm, author = {Agnieszka Drwalewska and Les\l aw Gajek}, title = {On localizing global Pareto solutions in a given convex set}, journal = {Applicationes Mathematicae}, volume = {26}, year = {1999}, pages = {383-394}, zbl = {1010.90071}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i4p383bwm} }
Drwalewska, Agnieszka; Gajek, Lesław. On localizing global Pareto solutions in a given convex set. Applicationes Mathematicae, Tome 26 (1999) pp. 383-394. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i4p383bwm/
[000] [1] B. D. Craven, Mathematical Programming and Control Theory, Halsted, London, 1982.
[001] [2] R. Engelking, General Topology, Monograf. Mat. 60, PWN, Warszawa, 1977.
[002] [3] L. Gajek and D. Zagrodny, Existence of maximal points with respect to ordered bipreference relations, J. Optim. Theory Appl. 70 (1991), 355-364. | Zbl 0748.90061
[003] [4] L. Gajek and D. Zagrodny, Countably orderable sets and their applications in optimization, Optimization 26 (1992), 287-301. | Zbl 0815.49020
[004] [5] L. Gajek and D. Zagrodny, Weierstrass theorem for monotonically semicontinuous functions, ibid. 29 (1994), 199-203. | Zbl 0817.49010
[005] [6] B. Pshenichnyĭ, Necessary Conditions for an Extremum, Nauka, Moscow, 1982 (in Russian).
[006] [7] S. Rolewicz, On drop property, Studia Math. 85 (1987), 27-35. | Zbl 0642.46011
[007] [8] W. Rudin, Functional Analysis, Moscow, Mir, 1975 (in Russian); English original: McGraw-Hill, New York, 1973.
[008] [9] C. Swartz, Pshenichnyĭ's theorem for vector minimization, J. Optim. Theory Appl. 53 (1987), 309-317. | Zbl 0595.90080