A note on orthogonal series regression function estimators
Popiński, Waldemar
Applicationes Mathematicae, Tome 26 (1999), p. 281-291 / Harvested from The Polish Digital Mathematics Library

The problem of nonparametric estimation of the regression function f(x) = E(Y | X=x) using the orthonormal system of trigonometric functions or Legendre polynomials ek, k=0,1,2,..., is considered in the case where a sample of i.i.d. copies (Xi,Yi), i=1,...,n, of the random variable (X,Y) is available and the marginal distribution of X has density ϱ ∈ L1[a,b]. The constructed estimators are of the form f^n(x)=k=0N(n)c^kek(x), where the coefficients c^0,c^1,...,c^N are determined by minimizing the empirical risk n-1i=1n(Yi-k=0Nckek(Xi))2. Sufficient conditions for consistency of the estimators in the sense of the errors EX|f(X)-f^n(X)|2 and n-1i=1nE(f(Xi)-f^n(Xi))2 are obtained.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:219239
@article{bwmeta1.element.bwnjournal-article-zmv26i3p281bwm,
     author = {Waldemar Popi\'nski},
     title = {A note on orthogonal series regression function estimators},
     journal = {Applicationes Mathematicae},
     volume = {26},
     year = {1999},
     pages = {281-291},
     zbl = {0992.62039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i3p281bwm}
}
Popiński, Waldemar. A note on orthogonal series regression function estimators. Applicationes Mathematicae, Tome 26 (1999) pp. 281-291. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i3p281bwm/

[000] [1] A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conference on Neural Networks, San Diego, California, IEEE Press, New York, 1988, 657-664.

[001] [2] L. Györfi and H. Walk, On the strong universal consistency of a series type regression estimate, Math. Methods Statist. 5 (1996), 332-342. | Zbl 0874.62048

[002] [3] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (1995), 677-687. | Zbl 0818.62041

[003] [4] W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102. | Zbl 0789.62032

[004] [5] --, Consistency of trigonometric and polynomial regression estimators, ibid. 25 (1998), 73-83.

[005]

[006] [7] V. N. Vapnik, Estimation of Dependencies Based on Empirical Data, Springer, New York, 1982. | Zbl 0499.62005