The problem of nonparametric estimation of the regression function f(x) = E(Y | X=x) using the orthonormal system of trigonometric functions or Legendre polynomials , k=0,1,2,..., is considered in the case where a sample of i.i.d. copies , i=1,...,n, of the random variable (X,Y) is available and the marginal distribution of X has density ϱ ∈ [a,b]. The constructed estimators are of the form , where the coefficients are determined by minimizing the empirical risk . Sufficient conditions for consistency of the estimators in the sense of the errors and are obtained.
@article{bwmeta1.element.bwnjournal-article-zmv26i3p281bwm, author = {Waldemar Popi\'nski}, title = {A note on orthogonal series regression function estimators}, journal = {Applicationes Mathematicae}, volume = {26}, year = {1999}, pages = {281-291}, zbl = {0992.62039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i3p281bwm} }
Popiński, Waldemar. A note on orthogonal series regression function estimators. Applicationes Mathematicae, Tome 26 (1999) pp. 281-291. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i3p281bwm/
[000] [1] A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conference on Neural Networks, San Diego, California, IEEE Press, New York, 1988, 657-664.
[001] [2] L. Györfi and H. Walk, On the strong universal consistency of a series type regression estimate, Math. Methods Statist. 5 (1996), 332-342. | Zbl 0874.62048
[002] [3] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (1995), 677-687. | Zbl 0818.62041
[003] [4] W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102. | Zbl 0789.62032
[004] [5] --, Consistency of trigonometric and polynomial regression estimators, ibid. 25 (1998), 73-83.
[005]
[006] [7] V. N. Vapnik, Estimation of Dependencies Based on Empirical Data, Springer, New York, 1982. | Zbl 0499.62005