We are interested in the optimality of monotonicity criteria for the period function of some planar Hamiltonian systems. This study is illustrated by examples.
@article{bwmeta1.element.bwnjournal-article-zmv26i3p243bwm, author = {R. Chouikha and F. Cuvelier}, title = {Remarks on some monotonicity conditions for the period function}, journal = {Applicationes Mathematicae}, volume = {26}, year = {1999}, pages = {243-252}, zbl = {0993.37029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i3p243bwm} }
Chouikha, R.; Cuvelier, F. Remarks on some monotonicity conditions for the period function. Applicationes Mathematicae, Tome 26 (1999) pp. 243-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i3p243bwm/
[000] [1] C. Chicone, The monotonicity of the period for planar hamiltonian vector fields, J. Differential Equations 69 (1987), 310-321. | Zbl 0622.34033
[001] [2] A. Kelfa and R. Chouikha, Monotonicity conditions for the period function of some planar hamiltonian systems, Comm. Appl. Nonlinear Anal. 4 (1996), no. 3, 99-120. | Zbl 0872.34026
[002] [3] F. Rothe, Remarks on periods of planar hamiltonian systems, SIAM J. Math. Anal. 24 (1993), 129-154. | Zbl 0769.34032
[003] [4] R. Schaaf, A class of hamiltonian systems with increasing periods, J. Reine Angew. Math. 363 (1985), 96-109. | Zbl 0565.34037
[004] [5] R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Math. 1458, Springer, 1990. | Zbl 0780.34010
[005] [6] D. Wang and S. N. Chow, On the monotonicity of the period function of some second order equations, Časopis Pěst. Mat. 111 (1986), 14-25. | Zbl 0603.34034