Remarks on some monotonicity conditions for the period function
Chouikha, R. ; Cuvelier, F.
Applicationes Mathematicae, Tome 26 (1999), p. 243-252 / Harvested from The Polish Digital Mathematics Library

We are interested in the optimality of monotonicity criteria for the period function of some planar Hamiltonian systems. This study is illustrated by examples.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:219236
@article{bwmeta1.element.bwnjournal-article-zmv26i3p243bwm,
     author = {R. Chouikha and F. Cuvelier},
     title = {Remarks on some monotonicity conditions for the period function},
     journal = {Applicationes Mathematicae},
     volume = {26},
     year = {1999},
     pages = {243-252},
     zbl = {0993.37029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i3p243bwm}
}
Chouikha, R.; Cuvelier, F. Remarks on some monotonicity conditions for the period function. Applicationes Mathematicae, Tome 26 (1999) pp. 243-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i3p243bwm/

[000] [1] C. Chicone, The monotonicity of the period for planar hamiltonian vector fields, J. Differential Equations 69 (1987), 310-321. | Zbl 0622.34033

[001] [2] A. Kelfa and R. Chouikha, Monotonicity conditions for the period function of some planar hamiltonian systems, Comm. Appl. Nonlinear Anal. 4 (1996), no. 3, 99-120. | Zbl 0872.34026

[002] [3] F. Rothe, Remarks on periods of planar hamiltonian systems, SIAM J. Math. Anal. 24 (1993), 129-154. | Zbl 0769.34032

[003] [4] R. Schaaf, A class of hamiltonian systems with increasing periods, J. Reine Angew. Math. 363 (1985), 96-109. | Zbl 0565.34037

[004] [5] R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Math. 1458, Springer, 1990. | Zbl 0780.34010

[005] [6] D. Wang and S. N. Chow, On the monotonicity of the period function of some second order equations, Časopis Pěst. Mat. 111 (1986), 14-25. | Zbl 0603.34034