Nonstationary Marangoni convection
Wagner, Alfred
Applicationes Mathematicae, Tome 26 (1999), p. 195-220 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:219233
@article{bwmeta1.element.bwnjournal-article-zmv26i2p195bwm,
     author = {Alfred Wagner},
     title = {Nonstationary Marangoni convection},
     journal = {Applicationes Mathematicae},
     volume = {26},
     year = {1999},
     pages = {195-220},
     zbl = {1007.35108},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i2p195bwm}
}
Wagner, Alfred. Nonstationary Marangoni convection. Applicationes Mathematicae, Tome 26 (1999) pp. 195-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i2p195bwm/

[000] [ADN] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundaryfor solutions of elliptic partial differential equations satisfying generalboundary conditions II, Comm. Pure Appl. Math. 7 (1964), 35-92. | Zbl 0123.28706

[001] [Aubin] T. Aubin, Nonlinear Analysis on Manifols. Monge-AmpèreEquations, Springer, New York, 1982. | Zbl 0512.53044

[002] [Beale1] J. T. Beale, The initial value problem for the Navier-Stokes equations with a free surface, Comm. Pure Appl. Math. 34 (1981), 359-392. | Zbl 0464.76028

[003] [Beale2] J. T. Beale, Large time regularity of viscous surface waves,Arch. Rational Mech. Anal. 84 (1983/84), 307-352. | Zbl 0545.76029

[004] [Bem1] J. Bemelmans, Gleichgewichtsfiguren zäher Flüssigkeitenmit Oberflächenspannung, Analysis 1 (1981), 241-282.

[005] [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. | Zbl 0562.35001

[006] Kacur[] J. Kacur, Method of Rothe in Evolution Equations, Teubner,Leipzig, 1985. | Zbl 0582.65084

[007] [Lad] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985.

[008] [L&M] J. L. Lions and E. Magenes, Nonhomogeneous Boundary ValueProblems and Applications, Springer, New York, 1972.

[009] [Olej] O. A. Oleĭnik, Korn's type inequalities and applications to elasticity, preprint.

[010] [Sol1] V. A. Solonnikov, Solvability of the problem of the motion of a viscous incompressible fluid bounded by a free surface, Izv. Akad. Nauk SSSR 41 (1977), 1388-1424 (in Russian).

[011] [Sol2] V. A. Solonnikov, Solvability of the problem of evolution of an isolated volume of viscous incompressible capillary fluid, Zap. Nauchn. Sem. LOMI 140 (1984), 179-186 (in Russian). | Zbl 0551.76022

[012] [Sol3] V. A. Solonnikov, Unsteady motion of a finite mass of fluid,bounded by a free surface, ibid. 152 (1986), 137-157 (in Russian).

[013] [Sol4] V. A. Solonnikov, Evolution of an isolated volume of aviscous incompressible capillary fluid for large time values,Vestnik Leningrad Univ. 1987, no. 3, 49-55.

[014] [Sol5] V. A. Solonnikov, On a nonstationary motion of a finite massof a liquid bounded by a free surface, in: Lecture Notes Pure Appl. Math. 118, Dekker, 1989, 647-653.

[015] [Sol&Shch] V. A. Solonnikov and V. E. Shchadilov, On a boundary value problem for the stationarysystem of Navier-Stokes equations, Proc. Steklov Inst. Math. 125 (1973), 186-199.

[016] [Sol&Tan] V. A. Solonnikov and A. Tani, A problem with free boundary for Navier-Stokes equations for a compressible fluid in the presence of surface tension, Zap. Nauchn. Sem. LOMI 182 (1990), 142-148 (in Russian). | Zbl 0723.76026

[017] [Tem] R. Temam, Navier-Stokes Equations, 2nd ed., North-Holland, 1979.

[018] [ZZ1] E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscousheat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170.

[019] [ZZ2] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems forviscous compressible heat conducting fluids, Bull. Polish Acad. Sci. 42 (1994), 197-205. | Zbl 0814.76075

[020] [ZZ3] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for equations of aviscous compressible heat conducting fluid bounded by a free surface, Ann. Polon. Math.61 (1995), 141-188. | Zbl 0833.35156

[021] [ZZ4] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems forviscous compressible heat conducting capillary fluids, Bull. Polish Acad. Sci. 43 (1995), 423-444. | Zbl 0880.76065

[022] [ZZ5] E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundaryproblem for equations of a viscous compressible heat conducting fluid, Ann. Polon. Math. 63 (1996), 199-221. | Zbl 0862.35147

[023] [ZZ6] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for aviscous compressible heat conducting capillary fluid bounded by a free surface, ibid. | Zbl 0885.35101

[024] [ZZ7] E. Zadrzyńska and W. M. Zajączkowski, Local existence of solutions of a free boundaryproblem for equations of compressible viscous heat-conducting fluids, Appl. Math. (Warsaw) 25 (1998), 179-220. | Zbl 0906.35079