Global-in-time existence of solutions for equations of viscous compressible barotropic fluid in a bounded domain Ω ⊂ with the boundary slip condition is proved. The solution is close to an equilibrium solution. The proof is based on the energy method. Moreover, in the -approach the result is sharp (the regularity of the solution cannot be decreased) because the velocity belongs to and the density belongs to , α ∈ (1/2,1).
@article{bwmeta1.element.bwnjournal-article-zmv26i2p159bwm, author = {Takayuki Kobayashi and Wojciech Zaj\k aczkowski}, title = {On global motion of a compressible barotropic viscous fluid with boundary slip condition}, journal = {Applicationes Mathematicae}, volume = {26}, year = {1999}, pages = {159-194}, zbl = {1016.76064}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i2p159bwm} }
Kobayashi, Takayuki; Zajączkowski, Wojciech. On global motion of a compressible barotropic viscous fluid with boundary slip condition. Applicationes Mathematicae, Tome 26 (1999) pp. 159-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i2p159bwm/
[000] [1] R. A. Adams, Sobolev Spaces, Acad. Press, New York, 1975.
[001] [2] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 (in Russian); English transl.: Scripta Series in Mathematics, Winston and Halsted Press, 1979.
[002] [3] M. Burnat and W. M. Zajączkowski, On local motion of compressible barotropic viscous fluid with the boundary slip condition, to appear. | Zbl 0916.35086
[003] [4] K. K. Golovkin, On equivalent norms for fractional spaces, Trudy Mat. Inst. Steklov. 66 (1962), 364-383 (in Russian).
[004] [5] L. Landau and E. Lifschitz, Mechanics of Continuum Media, Nauka, Moscow, 1954 (in Russian); English transl.: Pergamon Press, Oxford, 1959; new edition: Hydrodynamics, Nauka, Moscow, 1986 (in Russian).
[005] [6] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat conductive fluids, Proc. Japan Acad. Ser. A 55 (1979), 337-342. | Zbl 0447.76053
[006] [7] A. Matsumura and T. Nishida, The initial value problems for the equations of motion of compressible viscous and heat conductive gases, J. Math. Kyoto Univ. 20 (1980), 67-104. | Zbl 0429.76040
[007] [8] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids, Comm. Math. Phys. 89 (1983), 445-464. | Zbl 0543.76099
[008] [9] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in: Computing Methods in Applied Sciences and Engineering, V, R. Glowinski and J. L. Lions (eds.), North-Holland, Amsterdam, 1982, 389-406. | Zbl 0505.76083
[009] [10] J. Serrin, Mathematical Principles of Classical Fluid Mechanics, Handbuch der Physik, Bd. VIII/1, Springer, Berlin, 1959.
[010] [11] V. A. Solonnikov and V. E. Shchadilov, On a boundary value problem for a stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov. 125 (1973), 196-210 (in Russian); English transl.: Proc. Steklov Inst. Math. 125 (1973), 186-199.
[011] [12] V. A. Solonnikov and A. Tani, Evolution free boundary problem for equations of motion of a viscous compressible barotropic liquid, Zap. Nauchn. Sem. LOMI 182 (1990), 142-148; also in: Constantin Carathéodory: an International Tribute, M. Rassias (ed.), Vol. 2, World Sci., 1991, 1270-1303. | Zbl 0723.76026
[012] [13] G. Ströhmer, About a certain class of parabolic-hyperbolic systems of differential equations, Analysis 9 (1989), 1-39. | Zbl 0685.35078
[013] [14] G. Ströhmer, About compressible viscous fluid flow in a bounded domain, Pacific J. Math. 143 (1990), 359-375. | Zbl 0669.76089
[014] [15] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa (4) 10 (1983), 607-647. | Zbl 0542.35062
[015] [16] A. Valli and W. M. Zajączkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys. 103 (1986), 259-296. | Zbl 0611.76082