We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as t → ∞. Finally, we investigate the rate of this convergence.
@article{bwmeta1.element.bwnjournal-article-zmv26i2p133bwm, author = {Salah Badraoui}, title = {Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory}, journal = {Applicationes Mathematicae}, volume = {26}, year = {1999}, pages = {133-150}, zbl = {1019.35015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i2p133bwm} }
Badraoui, Salah. Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory. Applicationes Mathematicae, Tome 26 (1999) pp. 133-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i2p133bwm/
[000] [1] N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differential Equations 33 (1979), 201-225. | Zbl 0386.34046
[001] [2] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225-254.
[002] [3] E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), 1-16. | Zbl 0383.35035
[003] [4] A. Haraux et M. Kirane, Estimations pour des problèmes paraboliques semi-linéaires, Ann. Fac. Sci. Toulouse 5 (1983), 265-280. | Zbl 0531.35048
[004] [5] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, New York, 1981. | Zbl 0456.35001
[005] [6] H. Hoshino and Y. Yamada, Asymptotic behavior of global solutions for some reaction-diffusion equations, Funkcial. Ekvac. 34 (1991), 475-490.
[006] [7] M. Kirane and A. Youkana, A reaction-diffusion system modelling the post irridiation oxydation of an isotactic polypropylene, Demonstratio Math. 23 (1990), 309-321. | Zbl 0767.35037
[007] [8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[008] [9] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math. 1072, Springer, Berlin, 1984. | Zbl 0546.35003
[009] [10] D. Schmitt, Existence globale ou explosion pour les systèmes de réaction-diffusion avec contrôle de masse, Thèse de doctorat de l'Université Henri Poincaré, Nancy I, 1995.
[010] [11] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, Berlin, 1983. | Zbl 0508.35002