Least-squares trigonometric regression estimation
Popiński, Waldemar
Applicationes Mathematicae, Tome 26 (1999), p. 121-131 / Harvested from The Polish Digital Mathematics Library

The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions ek, k=0,1,2,..., for the observation model yi=f(xin)+ηi, i=1,...,n, is considered, where ηi are uncorrelated random variables with zero mean value and finite variance, and the observation points xin[0,2π], i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error (1/n)i=1nE(f(xin)-f^N(n)(xin))2, the integrated mean-square error Ef-f^N(n)2 and the pointwise mean-square error E(f(x)-N(n)(x))2 of the estimator f^N(n)(x)=k=0N(n)c^kek(x) for f ∈ C[0,2π] and c^0,c^1,...,c^N(n) obtained by the least squares method are studied.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:219229
@article{bwmeta1.element.bwnjournal-article-zmv26i2p121bwm,
     author = {Waldemar Popi\'nski},
     title = {Least-squares trigonometric regression estimation},
     journal = {Applicationes Mathematicae},
     volume = {26},
     year = {1999},
     pages = {121-131},
     zbl = {0992.62037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i2p121bwm}
}
Popiński, Waldemar. Least-squares trigonometric regression estimation. Applicationes Mathematicae, Tome 26 (1999) pp. 121-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i2p121bwm/

[000] [1] B. Droge, On finite-sample properties of adaptive least-squares regression estimates, Statistics 24 (1993), 181-203. | Zbl 0808.62035

[001] [2] R. L. Eubank and P. Speckman, Convergence rates for trigonometric and polynomial-trigonometric regression estimators, Statist. Probab. Lett. 11 (1991), 119-124. | Zbl 0712.62037

[002] [3] T. Gasser, L. Sroka and C. Jennen-Steinmetz, Residual variance and residual pattern in nonlinear regression, Biometrika 73 (1986), 625-633. | Zbl 0649.62035

[003] [4] P. Hall, J. W. Kay and D. M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression, ibid. 77 (1990), 521-528.

[004] [5] P. Hall and P. Patil, On wavelet methods for estimating smooth functions, J. Bernoulli Soc. 1 (1995), 41-58. | Zbl 0830.62037

[005] [6] G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New York, 1966. | Zbl 0153.38901

[006] [7] C. L. Mallows, Some comments on Cp, Technometrics 15 (1973), 661-675.

[007] [8] E. Nadaraya, Limit distribution of the integrated squared error of trigonometric series regression estimator, Proc. Georgian Acad. Sci. Math. 1 (1993), 221-237. | Zbl 0796.62039

[008] [9] B. T. Polyak and A. B. Tsybakov, Asymptotic optimality of the Cp criterion in projection type estimation of regression functions, Teor. Veroyatnost. Primenen. 35 (1990), 305-317 (in Russian).

[009] [10] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. | Zbl 0649.62034

[010] [11] A. Zygmund, Trigonometrical Series, Dover, 1955. | Zbl 0065.05604