The problem of robust Bayesian estimation in a normal model with asymmetric loss function (LINEX) is considered. Some uncertainty about the prior is assumed by introducing two classes of priors. The most robust and conditional Γ-minimax estimators are constructed. The situations when those estimators coincide are presented.
@article{bwmeta1.element.bwnjournal-article-zmv26i1p85bwm, author = {Agata Boraty\'nska and Monika Drozdowicz}, title = {Robust Bayesian estimation in a normal model with asymmetric loss function}, journal = {Applicationes Mathematicae}, volume = {26}, year = {1999}, pages = {85-92}, zbl = {0992.62028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i1p85bwm} }
Boratyńska, Agata; Drozdowicz, Monika. Robust Bayesian estimation in a normal model with asymmetric loss function. Applicationes Mathematicae, Tome 26 (1999) pp. 85-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i1p85bwm/
[000] [1] B. Betro and F. Ruggeri, Conditional Γ-minimax actions under convex losses, Comm. Statist. Theory Methods 21 (1992), 1051-1066. | Zbl 0800.62043
[001] [2] A. Boratyńska, Stability of Bayesian inference in exponential families, Statist. Probab. Lett. 36 (1997), 173-178. | Zbl 0893.62017
[002] [3] A. Boratyńska and M. Męczarski, Robust Bayesian estimation in the one-dimensional normal model, Statistics and Decision 12 (1994), 221-230. | Zbl 0802.62032
[003] [4] A. DasGupta and W. J. Studden, Frequentist behavior of robust Bayes estimates of normal means, Statist. Decisions 7 (1989), 333-361. | Zbl 0685.62004
[004] [5] M. Męczarski, Stability and conditional Γ-minimaxity in Bayesian inference, Appl. Math. (Warsaw) 22 (1993), 117-122. | Zbl 0789.62007
[005] [6] M. Męczarski and R. Zieliński, Stability of the Bayesian estimator of the Poisson mean under the inexactly specified gamma prior, Statist. Probab. Lett. 12 (1991), 329-333.
[006] [7] H. R. Varian, A Bayesian approach to real estate assessment, in: Studies in Bayesian Econometrics and Statistics, North-Holland, 1974, 195-208.
[007] [8] A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, J. Amer. Statist. Assoc. 81 (1986), 446-451. | Zbl 0603.62037