We study stationary solutions of the system , m => 1, Δφ = ±u, defined in a bounded domain Ω of . The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.
@article{bwmeta1.element.bwnjournal-article-zmv26i1p107bwm, author = {Andrzej Raczy\'nski}, title = {On a nonlocal elliptic problem}, journal = {Applicationes Mathematicae}, volume = {26}, year = {1999}, pages = {107-119}, zbl = {0995.35023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i1p107bwm} }
Raczyński, Andrzej. On a nonlocal elliptic problem. Applicationes Mathematicae, Tome 26 (1999) pp. 107-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i1p107bwm/
[000] [1] G. I. Barenblatt, V. M. Entov and V. M. Ryzhik, Theory of Fluid Flows Through Natural Rocks, Kluwer, Dordrecht, 1990. | Zbl 0769.76001
[001] [2] J.-M. Bony, Principe du maximum, inégalité de Harnack, et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 277-304. | Zbl 0176.09703
[002] [3] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary condition, Nonlinear Anal. 19 (1992), 229-239. | Zbl 0781.35025
[003] [4] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, ibid. 23 (1994), 1189-1209. | Zbl 0814.35054
[004] [5] P. Biler, D. Hilhorst and T. Nadzieja,
[005] [E]xistence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308.
[006] [6] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145. | Zbl 0818.35046
[007] [7] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. | Zbl 0817.35041
[008] [8] P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Nonlinear Anal. 30 (1997), 5343-5350. | Zbl 0892.35073
[009] [9] P. Biler and T. Nadzieja, A singular problem in electrolytes theory, Math. Methods Appl. Sci. 20 (1997), 767-782. | Zbl 0885.35051
[010] [10] P. Biler and T. Nadzieja, A nonlocal singular parabolic problem modelling gravitational interaction of particles, Adv. Differential Equations 3 (1998), 177-197. | Zbl 0952.35008
[011] [11] P. Biler, T. Nadzieja and A. Raczyński, Nonlinear singular parabolic equations, in: Reaction-Diffusion Systems (Trieste, 1995), Lecture Notes in Pure and Appl. Math. 194, G. Caristi and E. Mitidieri (eds.), Dekker, 1998, 21-36. | Zbl 0912.35090
[012] [12] P. Debye und E. Hückel, Zur Theorie der Electrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Z. 24 (1923), 185-217. | Zbl 49.0587.11
[013] [13] A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci. 5 (1994), 677-703. | Zbl 0820.35128
[014] [14] A. Krzywicki and T. Nadzieja, Poisson-Boltzmann equation in , Ann. Polon. Math. 54 (1991), 125-134. | Zbl 0733.35039
[015] [15] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. | Zbl 0754.35142
[016] [16] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer, Wien-New York, 1990. | Zbl 0765.35001
[017] [17] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Appl. Math. (Warsaw) 23 (1995), 169-178. | Zbl 0839.35110
[018] [18] T. Nadzieja and A. Raczyński, A singular radially symmetric problem in electrolytes theory, ibid. 25 (1998), 101-112. | Zbl 0919.35020
[019] [19] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. | Zbl 0777.35001
[020] [20] M. Struwe, Variational Methods, Springer, New York, 1990.