The bivariate negative binomial distribution is introduced using the Marshall-Olkin type bivariate geometrical distribution. It is used to the estimation of the distribution of the number of accidents in standard data.
@article{bwmeta1.element.bwnjournal-article-zmv25i4p457bwm, author = {Ilona Kopoci\'nska}, title = {Bivariate negative binomial distribution of the Marshall-Olkin type}, journal = {Applicationes Mathematicae}, volume = {26}, year = {1999}, pages = {457-461}, zbl = {0998.60011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i4p457bwm} }
Kopocińska, Ilona. Bivariate negative binomial distribution of the Marshall-Olkin type. Applicationes Mathematicae, Tome 26 (1999) pp. 457-461. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i4p457bwm/
[000] [1] G. E. Bates and J. Neyman, Contribution to the theory of accident proneness, I. An optimistic model of the correlation between light and severe accidents, Univ. of California Publ. Statist. 1 (1952), 215-254. | Zbl 0047.13404
[001] [2] C. B. Edwards and J. Gurland, A class of distributions applicable to accidents, J. Amer. Statist. Assoc. 56 (1961), 503-517. | Zbl 0201.52805
[002] [3] B. Kopociński, Bivariate negative binomial distribution based on a bivariate exponential distribution function, to appear.
[003] [4] A. W. Marshall and I. Olkin, A multivariate exponential distribution, J. Amer. Statist. Assoc. 62 (1967), 30-44.
[004] [5] K. Subrahmaniam and K. Subrahmaniam, On the estimation of the parameters in the bivariate negative binomial distribution, J. Roy. Statist. Assoc. 35 (1973), 131-146. | Zbl 0281.62035