One more method of Poisson approximation is presented and illustrated with examples concerning binomial, negative binomial and hypergeometric distributions.
@article{bwmeta1.element.bwnjournal-article-zmv25i3p387bwm, author = {M. Majsnerowska}, title = {A note on Poisson approximation by w-functions}, journal = {Applicationes Mathematicae}, volume = {25}, year = {1998}, pages = {387-392}, zbl = {0998.60021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i3p387bwm} }
Majsnerowska, M. A note on Poisson approximation by w-functions. Applicationes Mathematicae, Tome 25 (1998) pp. 387-392. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i3p387bwm/
[000] A. D. Barbour and G. K. Eagleson (1983), Poisson approximation for some statistics based on exchangeable trials, Adv. Appl. Probab. 15, 585-560. | Zbl 0511.60025
[001] A. D. Barbour, L. Holst and S. Janson (1992), Poisson Approximation, Oxford Univ. Press, Oxford.
[002] P. Billingsley (1979), Probability and Measure, Wiley, New York. | Zbl 0411.60001
[003] T. Cacoullos and V. Papathanasiou (1989), Characterizations of distributions by variance bounds, Statist. Probab. Lett. 7, 351-356. | Zbl 0677.62012
[004] T. Cacoullos, V. Papathanasiou and S. A. Utev (1994), Variational inequalities with examples and an application to the Central Limit Theorem, Ann. Probab. 22, 1607-1618. | Zbl 0835.60023
[005] V. Papathanasiou and S. A. Utev (1995), Integro-differential inequalities and the Poisson approximation, Siberian Adv. Math. 5, 120-132. | Zbl 0854.60022
[006] V. Veervat (1969), Upper bounds for the distance in total variation between the binomial and negative binomial and the Poisson distribution, Statist. Neerlandica 23, 79-86.