A note on Poisson approximation by w-functions
Majsnerowska, M.
Applicationes Mathematicae, Tome 25 (1998), p. 387-392 / Harvested from The Polish Digital Mathematics Library

One more method of Poisson approximation is presented and illustrated with examples concerning binomial, negative binomial and hypergeometric distributions.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:219212
@article{bwmeta1.element.bwnjournal-article-zmv25i3p387bwm,
     author = {M. Majsnerowska},
     title = {A note on Poisson approximation by w-functions},
     journal = {Applicationes Mathematicae},
     volume = {25},
     year = {1998},
     pages = {387-392},
     zbl = {0998.60021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i3p387bwm}
}
Majsnerowska, M. A note on Poisson approximation by w-functions. Applicationes Mathematicae, Tome 25 (1998) pp. 387-392. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i3p387bwm/

[000] A. D. Barbour and G. K. Eagleson (1983), Poisson approximation for some statistics based on exchangeable trials, Adv. Appl. Probab. 15, 585-560. | Zbl 0511.60025

[001] A. D. Barbour, L. Holst and S. Janson (1992), Poisson Approximation, Oxford Univ. Press, Oxford.

[002] P. Billingsley (1979), Probability and Measure, Wiley, New York. | Zbl 0411.60001

[003] T. Cacoullos and V. Papathanasiou (1989), Characterizations of distributions by variance bounds, Statist. Probab. Lett. 7, 351-356. | Zbl 0677.62012

[004] T. Cacoullos, V. Papathanasiou and S. A. Utev (1994), Variational inequalities with examples and an application to the Central Limit Theorem, Ann. Probab. 22, 1607-1618. | Zbl 0835.60023

[005] V. Papathanasiou and S. A. Utev (1995), Integro-differential inequalities and the Poisson approximation, Siberian Adv. Math. 5, 120-132. | Zbl 0854.60022

[006] V. Veervat (1969), Upper bounds for the distance in total variation between the binomial and negative binomial and the Poisson distribution, Statist. Neerlandica 23, 79-86.