Convergence acceleration by the E+p-algorithm
Fdil, A.
Applicationes Mathematicae, Tome 25 (1998), p. 327-338 / Harvested from The Polish Digital Mathematics Library

A new algorithm which generalizes the E-algorithm is presented. It is called the E+p-algorithm. Some results on convergence acceleration for the E+p-algorithm are proved. Some applications are given.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:219207
@article{bwmeta1.element.bwnjournal-article-zmv25i3p327bwm,
     author = {A. Fdil},
     title = {Convergence acceleration by the $E\_{+p}$-algorithm},
     journal = {Applicationes Mathematicae},
     volume = {25},
     year = {1998},
     pages = {327-338},
     zbl = {0998.65002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i3p327bwm}
}
Fdil, A. Convergence acceleration by the $E_{+p}$-algorithm. Applicationes Mathematicae, Tome 25 (1998) pp. 327-338. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i3p327bwm/

[000] [1] C. Brezinski, Algorithmes d'Accélération de la Convergence en Analyse Numérique. Etude numérique, Technip, Paris, 1978. | Zbl 0396.65001

[001] [2] C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980), 175-187. | Zbl 0444.65001

[002] [3] C. Brezinski and M. Redivo Zaglia, Extrapolation Methods, Theory and Practice, North-Holland, Amsterdam, 1991. | Zbl 0814.65001

[003] [4] J. P. Delahaye, Sequence Transformations, Springer, Berlin, 1988.

[004] [5] A. Fdil, Some results on convergence acceleration for the E-algorithm, Appl. Math. (Warsaw) 24 (1997), 393-413. | Zbl 0890.65004

[005] [6] L. Fox, Romberg integration for a class of singular integrands, Comput. J. 10 (1967), 87-93. | Zbl 0158.16001

[006] [7] H. L. Gray and W. D. Clark, On a class of nonlinear transformations and their applications to the evaluation of infinite series, J. Res. Nat. Bur. Standards Sect. B 73 (1969), 251-274. | Zbl 0187.10202

[007] [8] T. Håvie, Error derivation in Romberg integration, BIT 12 (1972), 516-527. | Zbl 0268.65019

[008] [9] T. Håvie, Generalized Neville type extrapolation schemes, ibid. 19 (1979), 204-213. | Zbl 0404.65001

[009] [10] D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Rev. 13 (1971), 435-490. | Zbl 0229.65005

[010] [11] J. N. Lyness, Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity, J. Comput. Phys. 20 (1976), 346-364. | Zbl 0336.65015

[011] [12] J. N. Lyness and B. W. Ninham, Numerical quadrature and asymptotic expansions, Math. Comp. 21 (1967), 162-177. | Zbl 0178.18402

[012] [13] C. Schneider, Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialfallen, Numer. Math. 24 (1975), 177-184. | Zbl 0291.65002

[013] [14] J. Wimp, Sequence Transformations and their Applications, Academic Press, New York, 1984. | Zbl 0566.47018