We examine the parabolic system of three equations - Δu = , - Δv = , - Δw = , x ∈ , t > 0 with p, q, r positive numbers, N ≥ 1, and nonnegative, bounded continuous initial values. We obtain global existence and blow up unconditionally (that is, for any initial data). We prove that if pqr ≤ 1 then any solution is global; when pqr > 1 and max(α,β,γ) ≥ N/2 (α, β, γ are defined in terms of p, q, r) then every nontrivial solution exhibits a finite blow up time.
@article{bwmeta1.element.bwnjournal-article-zmv25i3p313bwm, author = {Joanna Renc\l awowicz}, title = {Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations}, journal = {Applicationes Mathematicae}, volume = {25}, year = {1998}, pages = {313-326}, zbl = {1002.35070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i3p313bwm} }
Rencławowicz, Joanna. Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations. Applicationes Mathematicae, Tome 25 (1998) pp. 313-326. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i3p313bwm/
[000] [AHV] D. Andreucci, M. A. Herrero and J. J. L. Velázquez, Liouville theorems and blow up behaviour in semilinear reaction diffusion systems, Ann. Inst. H. Poincaré 14 (1997), 1-53. | Zbl 0877.35019
[001] [EH] M. Escobedo and M. A. Herrero, z Boundedness and blow up for a semilinear reaction-diffusion system, J. Differential Equations 89 (1991), 176-202. | Zbl 0735.35013
[002] [EL] M. Escobedo and H. A. Levine, z Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal. 129 (1995), 47-100. | Zbl 0822.35068
[003] [F1] H. Fujita, z On the blowing up of solutions of the Cauchy problem for = ∇u + , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 13 (1966), 109-124.
[004] [F2] H. Fujita, z On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, in: Proc. Sympos. Pure Math. 18, Amer. Math. Soc., 1970, 105-113.