Local existence of solutions of a free boundary problem for equations of compressible viscous heat-conducting fluids
Zadrzyńska, Ewa ; Zajączkowski, Wojciech
Applicationes Mathematicae, Tome 25 (1998), p. 179-220 / Harvested from The Polish Digital Mathematics Library

The local existence and the uniqueness of solutions for equations describing the motion of viscous compressible heat-conducting fluids in a domain bounded by a free surface is proved. First, we prove the existence of solutions of some auxiliary problems by the Galerkin method and by regularization techniques. Next, we use the method of successive approximations to prove the local existence for the main problem.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:219199
@article{bwmeta1.element.bwnjournal-article-zmv25i2p179bwm,
     author = {Ewa Zadrzy\'nska and Wojciech Zaj\k aczkowski},
     title = {Local existence of solutions of a free boundary problem for equations of compressible viscous heat-conducting fluids},
     journal = {Applicationes Mathematicae},
     volume = {25},
     year = {1998},
     pages = {179-220},
     zbl = {0906.35079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i2p179bwm}
}
Zadrzyńska, Ewa; Zajączkowski, Wojciech. Local existence of solutions of a free boundary problem for equations of compressible viscous heat-conducting fluids. Applicationes Mathematicae, Tome 25 (1998) pp. 179-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i2p179bwm/

[000] [1] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1986 (in Russian).

[001] [2] B. Ducomet, Hydrodynamical models od gaseous stars, Rep. Math. Phys., to appear. | Zbl 0949.76071

[002] [3] L. Landau and E. Lifschitz, Hydrodynamics, Nauka, Moscow, 1986 (in Russian); English transl.: Fluid Mechanics, Pergamon Press, Oxford, 1987.

[003] [4] P. Secchi, On the motion of gaseous stars in presence of radiation, Comm. Partial Differential Equations 15 (1990), 185-204. | Zbl 0708.35096

[004] [5] V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy Mat. Inst. Steklov. 83 (1965) (in Russian); English transl.: Proc. Steklov Inst. Math. 83 (1967). | Zbl 0164.12502

[005] [6] G. Ströhmer and W. M. Zajączkowski, Local existence of solutions of free boundary problem for the equations of compressible barotropic viscous self-gravitating fluids, to appear. | Zbl 1016.76065

[006] [7] E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscous heat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170. | Zbl 0812.35102

[007] [8] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems for viscous compressible heat-conducting fluids, Bull. Polish Acad. Sci. Tech. Sci. 42 (1994), 197-207. | Zbl 0814.76075

[008] [9] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for equations of a viscous compressible heat conducting fluid bounded by a free surface, Ann. Polon. Math. 61 (1995), 141-188. | Zbl 0833.35156

[009] [10] E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid, ibid. 63 (1996), 199-221. | Zbl 0862.35147

[010] [11] E. Zadrzyńska and W. M. Zajączkowski, On global motion of a compressible viscous heat conducting fluid bounded by a free surface, Acta Appl. Math. 37 (1994), 221-231. | Zbl 0813.35130

[011] [12] E. Zadrzyńska and W. M. Zajączkowski, On nonstationary motion of a fixed mass of a viscous compressible barotropic fluid bounded by a free boundary, in preparation. | Zbl 0930.35141