Information inequalities for the minimax risk of sequential estimators (with applications)
Gajek, Lesław ; Mizera-Florczak, B.
Applicationes Mathematicae, Tome 25 (1998), p. 85-100 / Harvested from The Polish Digital Mathematics Library

Information inequalities for the minimax risk of sequential estimators are derived in the case where the loss is measured by the squared error of estimation plus a linear functional of the number of observations. The results are applied to construct minimax sequential estimators of: the failure rate in an exponential model with censored data, the expected proportion of uncensored observations in the proportional hazards model, the odds ratio in a binomial distribution and the expectation of exponential type random variables.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:219196
@article{bwmeta1.element.bwnjournal-article-zmv25i1p85bwm,
     author = {Les\l aw Gajek and B. Mizera-Florczak},
     title = {Information inequalities for the minimax risk of sequential estimators (with applications)},
     journal = {Applicationes Mathematicae},
     volume = {25},
     year = {1998},
     pages = {85-100},
     zbl = {0895.62083},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p85bwm}
}
Gajek, Lesław; Mizera-Florczak, B. Information inequalities for the minimax risk of sequential estimators (with applications). Applicationes Mathematicae, Tome 25 (1998) pp. 85-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p85bwm/

[000] M. Alvo (1977), Bayesian sequential estimation, Ann. Statist. 5, 955-968. | Zbl 0368.62061

[001] Y. S. Chow, H. Robbins and D. Siegmund (1971), Great Expectations: The Theory of Optimal Stopping, Houghton Mifflin, Boston. | Zbl 0233.60044

[002] S. Csörgő (1988), Estimation in the proportional hazards model of random censorship, Statistics 19, 437-463.

[003] S. Csörgő and J. Mielniczuk (1988), Density estimation in the simple proportional hazards model, Statist. Probab. Letters 6, 419-426. | Zbl 0691.62039

[004] L. Gajek (1987), An improper Cramér-Rao lower bound, Zastos. Mat. 19, 241-256. | Zbl 0644.62027

[005] L. Gajek (1988), On minimax value in the scale model with truncated data, Ann. Statist. 16, 669-677. | Zbl 0645.62011

[006] L. Gajek and U. Gather (1991), Estimating a scale parameter under censorship, Statistics 22, 529-549. | Zbl 0742.62028

[007] J. C. Gardiner and V. Susarla (1984), Risk-efficient estimation of the mean exponential survival time under random censoring, Proc. Nat. Acad. Sci. U.S.A. 81, 5906-5909. | Zbl 0557.62074

[008] J. C. Gardiner and V. Susarla (1991), Some asymptotic distribution results in time-sequential estimation of the mean exponential survival time, Canad. J. Statist. 19, 425-436.

[009] J. C. Gardiner, V. Susarla and J. van Ryzin (1986), Time sequential estimation of the exponential mean under random withdrawals, Ann. Statist. 14, 607-618. | Zbl 0603.62088

[010] J. A. Koziol and S. B. Green (1976), A Cramér-von Mises statistic for randomly censored data, Biometrika 63, 465-474. | Zbl 0344.62018

[011] E. L. Lehmann (1983), Theory of Point Estimation, Wiley, New York. | Zbl 0522.62020

[012] R. Magiera (1977), On sequential minimax estimation for the exponential class of processes, Zastos. Mat. 15, 445-454. | Zbl 0371.62115

[013] B. Mizera (1996), Lower bounds on the minimax risk of sequential estimators, Statistics 28, 123-129. | Zbl 0864.62055

[014] W. Rudin (1976), Principles of Mathematical Analysis, McGraw-Hill, New York. | Zbl 0346.26002

[015] M. Tahir (1988), Asymptotically optimal Bayesian sequential point estimation with censored data, Sequential Anal. 7, 227-237. | Zbl 0689.62066

[016] J. Wolfowitz (1947), The efficiency of sequential estimates and Wald's equation for sequential processes, Ann. Math. Statist. 19, 215-230. | Zbl 0032.04203

[017] M. Woodroofe (1982), Nonlinear Renewal Theory in Sequential Analysis, CBMS-NSF Regional Conf. Ser. Appl. Math. 39, SIAM, Philadelphia. | Zbl 0487.62062