Consistency of trigonometric and polynomial regression estimators
Popiński, Waldemar
Applicationes Mathematicae, Tome 25 (1998), p. 73-83 / Harvested from The Polish Digital Mathematics Library

The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials ek, k=0,1,..., for the observation model yi=f(xi)+ηi, i=1,...,n, where the ηi are independent random variables with zero mean value and finite variance, and the observation points xi[a,b], i=1,...,n, form a random sample from a distribution with density ϱL1[a,b]. Sufficient and necessary conditions are obtained for consistency in the sense of the errors f-f^N,|f(x)-N(x)|, x[a,b], and Ef-N2 of the projection estimator f^N(x)=k=0Nc^kek(x) for c^0,c^1,...,c^N determined by the least squares method and fL2[a,b].

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:219195
@article{bwmeta1.element.bwnjournal-article-zmv25i1p73bwm,
     author = {Waldemar Popi\'nski},
     title = {Consistency of trigonometric and polynomial regression estimators},
     journal = {Applicationes Mathematicae},
     volume = {25},
     year = {1998},
     pages = {73-83},
     zbl = {0895.62047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p73bwm}
}
Popiński, Waldemar. Consistency of trigonometric and polynomial regression estimators. Applicationes Mathematicae, Tome 25 (1998) pp. 73-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p73bwm/

[000] [1] R. L. Eubank and B. R. Jayasuriya, The asymptotic average square error for polynomial regression, Statistics 24 (1993), 311-319. | Zbl 0808.62036

[001] [2] J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall, London, 1996.

[002] [3] A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conf. on Neural Networks, San Diego, Calif., IEEE Press, New York, 1988, 657-664.

[003] [4] G. G. Lorentz, Approximation of Functions, Holt, Reinehart and Winston, New York, 1966.

[004] [5] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687. | Zbl 0818.62041

[005] [6] G. V. Milovanovič, D. S. Mitrinovič and T. M. Rassias, Topics on Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994. | Zbl 0848.26001

[006] [7] W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102. | Zbl 0789.62032

[007] [8] W. Popiński, On Fourier coefficient estimators consistent in the mean-square sense, ibid., 275-284. | Zbl 0801.62040

[008] [9] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. | Zbl 0649.62034

[009] [10] G. Sansone, Orthogonal Functions, Interscience Publ., New York, 1959. | Zbl 0084.06106