The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials , k=0,1,..., for the observation model , i=1,...,n, where the are independent random variables with zero mean value and finite variance, and the observation points , i=1,...,n, form a random sample from a distribution with density . Sufficient and necessary conditions are obtained for consistency in the sense of the errors , , and of the projection estimator for determined by the least squares method and .
@article{bwmeta1.element.bwnjournal-article-zmv25i1p73bwm, author = {Waldemar Popi\'nski}, title = {Consistency of trigonometric and polynomial regression estimators}, journal = {Applicationes Mathematicae}, volume = {25}, year = {1998}, pages = {73-83}, zbl = {0895.62047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p73bwm} }
Popiński, Waldemar. Consistency of trigonometric and polynomial regression estimators. Applicationes Mathematicae, Tome 25 (1998) pp. 73-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p73bwm/
[000] [1] R. L. Eubank and B. R. Jayasuriya, The asymptotic average square error for polynomial regression, Statistics 24 (1993), 311-319. | Zbl 0808.62036
[001] [2] J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall, London, 1996.
[002] [3] A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conf. on Neural Networks, San Diego, Calif., IEEE Press, New York, 1988, 657-664.
[003] [4] G. G. Lorentz, Approximation of Functions, Holt, Reinehart and Winston, New York, 1966.
[004] [5] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687. | Zbl 0818.62041
[005] [6] G. V. Milovanovič, D. S. Mitrinovič and T. M. Rassias, Topics on Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994. | Zbl 0848.26001
[006] [7] W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102. | Zbl 0789.62032
[007] [8] W. Popiński, On Fourier coefficient estimators consistent in the mean-square sense, ibid., 275-284. | Zbl 0801.62040
[008] [9] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. | Zbl 0649.62034
[009] [10] G. Sansone, Orthogonal Functions, Interscience Publ., New York, 1959. | Zbl 0084.06106