The problem of finding minimax sequential estimation procedures for stochastic processes is considered. It is assumed that in addition to the loss associated with the error of estimation a cost of observing the process is incurred. A class of minimax sequential procedures is derived explicitly for a one-parameter exponential family of stochastic processes. The minimax sequential procedures are presented in some special models, in particular, for estimating a parameter of exponential families of diffusions, for estimating the mean or drift coefficients of the class of Ornstein-Uhlenbeck processes, for estimating the drift of a geometric Brownian motion and for estimating a parameter of a family of counting processes. A class of minimax sequential rules for a compound Poisson process with multinomial jumps is also found.
@article{bwmeta1.element.bwnjournal-article-zmv25i1p1bwm, author = {Ryszard Magiera}, title = {On minimax sequential procedures for exponential families of stochastic processes}, journal = {Applicationes Mathematicae}, volume = {25}, year = {1998}, pages = {1-18}, zbl = {0895.62084}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p1bwm} }
Magiera, Ryszard. On minimax sequential procedures for exponential families of stochastic processes. Applicationes Mathematicae, Tome 25 (1998) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p1bwm/
[000] Barndorff-Nielsen, O. (1978), Information and Exponential Families, Wiley, New York. | Zbl 0387.62011
[001] Black, F. and Scholes, M. (1973), The pricing of options and corporate liabilities, J. Political Economy 81, 637-654. | Zbl 1092.91524
[002] Brown, L. (1986), Fundamentals of Statistical Exponential Families, IMS, Hayward, Calif. | Zbl 0685.62002
[003] Döhler, R. (1981), Dominierbarkeit und Suffizienz in der Sequentialanalyse, Math. Operationsforsch. Statist. Ser. Statist. 12, 101-134. | Zbl 0473.62006
[004] Dvoretzky,, A. Kiefer, J. and Wolfowitz, J. (1953), Sequential decision problems for processes with continuous time parameter. Problems of estimation, Ann. Math. Statist. 24, 403-415. | Zbl 0051.36606
[005] Franz, J. (1985), Special sequential estimation problems in Markov processes, in: Sequential Methods in Statistics, R. Zieliński (ed.), Banach Center Publ. 16, PWN-Polish Sci. Publ., Warszawa, 95-114.
[006] Küchler, U. and Sørensen, M. (1994), Exponential families of stochastic processes and Lévy processes, J. Statist. Plann. Inference 39, 211-237. | Zbl 0854.60076
[007] Le Breton, A. and Musiela, M. (1985), Some parameter estimation problems for hypoelliptic homogeneous Gaussian diffusions, in: Sequential Methods in Statistics, R. Zieliński (ed.), Banach Center Publ. 16, PWN-Polish Sci. Publ., Warszawa, 337-356.
[008] Liptser, R. S. and Shiryaev, A. N. (1978), Statistics of Random Processes, Vol. 2, Springer, Berlin. | Zbl 0556.60003
[009] Magiera, R. (1977), On sequential minimax estimation for the exponential class of processes, Zastos. Mat. 15, 445-454. | Zbl 0371.62115
[010] Magiera, R. (1990), Minimax sequential estimation plans for exponential-type processes, Statist. Probab. Lett. 9, 179-185. | Zbl 0694.62035
[011] Magiera, R. and Wilczyński, M. (1991), Conjugate priors for exponential-type processes, ibid. 12, 379-384. | Zbl 0747.62030
[012] Rhiel, R. (1985), Sequential Bayesian and minimax decisions based on stochastic processes, Sequential Anal. 4, 213-245. | Zbl 0591.62069
[013] Różański, R. (1982), On minimax sequential estimation of the mean value of a stationary Gaussian Markov process, Zastos. Mat. 17, 401-408. | Zbl 0527.62074
[014] Trybuła, S. (1985), Some investigations in minimax estimation theory, Dissertationes Math. (Rozprawy Mat.) 240. | Zbl 0572.62010
[015] Wilczyński, M. (1985), Minimax sequential estimation for the multinomial and gamma processes, Zastos. Mat. 18, 577-595. | Zbl 0595.62079