On minimax sequential procedures for exponential families of stochastic processes
Magiera, Ryszard
Applicationes Mathematicae, Tome 25 (1998), p. 1-18 / Harvested from The Polish Digital Mathematics Library

The problem of finding minimax sequential estimation procedures for stochastic processes is considered. It is assumed that in addition to the loss associated with the error of estimation a cost of observing the process is incurred. A class of minimax sequential procedures is derived explicitly for a one-parameter exponential family of stochastic processes. The minimax sequential procedures are presented in some special models, in particular, for estimating a parameter of exponential families of diffusions, for estimating the mean or drift coefficients of the class of Ornstein-Uhlenbeck processes, for estimating the drift of a geometric Brownian motion and for estimating a parameter of a family of counting processes. A class of minimax sequential rules for a compound Poisson process with multinomial jumps is also found.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:219192
@article{bwmeta1.element.bwnjournal-article-zmv25i1p1bwm,
     author = {Ryszard Magiera},
     title = {On minimax sequential procedures for exponential families of stochastic processes},
     journal = {Applicationes Mathematicae},
     volume = {25},
     year = {1998},
     pages = {1-18},
     zbl = {0895.62084},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p1bwm}
}
Magiera, Ryszard. On minimax sequential procedures for exponential families of stochastic processes. Applicationes Mathematicae, Tome 25 (1998) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p1bwm/

[000] Barndorff-Nielsen, O. (1978), Information and Exponential Families, Wiley, New York. | Zbl 0387.62011

[001] Black, F. and Scholes, M. (1973), The pricing of options and corporate liabilities, J. Political Economy 81, 637-654. | Zbl 1092.91524

[002] Brown, L. (1986), Fundamentals of Statistical Exponential Families, IMS, Hayward, Calif. | Zbl 0685.62002

[003] Döhler, R. (1981), Dominierbarkeit und Suffizienz in der Sequentialanalyse, Math. Operationsforsch. Statist. Ser. Statist. 12, 101-134. | Zbl 0473.62006

[004] Dvoretzky,, A. Kiefer, J. and Wolfowitz, J. (1953), Sequential decision problems for processes with continuous time parameter. Problems of estimation, Ann. Math. Statist. 24, 403-415. | Zbl 0051.36606

[005] Franz, J. (1985), Special sequential estimation problems in Markov processes, in: Sequential Methods in Statistics, R. Zieliński (ed.), Banach Center Publ. 16, PWN-Polish Sci. Publ., Warszawa, 95-114.

[006] Küchler, U. and Sørensen, M. (1994), Exponential families of stochastic processes and Lévy processes, J. Statist. Plann. Inference 39, 211-237. | Zbl 0854.60076

[007] Le Breton, A. and Musiela, M. (1985), Some parameter estimation problems for hypoelliptic homogeneous Gaussian diffusions, in: Sequential Methods in Statistics, R. Zieliński (ed.), Banach Center Publ. 16, PWN-Polish Sci. Publ., Warszawa, 337-356.

[008] Liptser, R. S. and Shiryaev, A. N. (1978), Statistics of Random Processes, Vol. 2, Springer, Berlin. | Zbl 0556.60003

[009] Magiera, R. (1977), On sequential minimax estimation for the exponential class of processes, Zastos. Mat. 15, 445-454. | Zbl 0371.62115

[010] Magiera, R. (1990), Minimax sequential estimation plans for exponential-type processes, Statist. Probab. Lett. 9, 179-185. | Zbl 0694.62035

[011] Magiera, R. and Wilczyński, M. (1991), Conjugate priors for exponential-type processes, ibid. 12, 379-384. | Zbl 0747.62030

[012] Rhiel, R. (1985), Sequential Bayesian and minimax decisions based on stochastic processes, Sequential Anal. 4, 213-245. | Zbl 0591.62069

[013] Różański, R. (1982), On minimax sequential estimation of the mean value of a stationary Gaussian Markov process, Zastos. Mat. 17, 401-408. | Zbl 0527.62074

[014] Trybuła, S. (1985), Some investigations in minimax estimation theory, Dissertationes Math. (Rozprawy Mat.) 240. | Zbl 0572.62010

[015] Wilczyński, M. (1985), Minimax sequential estimation for the multinomial and gamma processes, Zastos. Mat. 18, 577-595. | Zbl 0595.62079