Compound Poisson approximation for extremes of moving minima in arrays of independent random variables
Dudkiewicz, Jadwiga
Applicationes Mathematicae, Tome 25 (1998), p. 19-28 / Harvested from The Polish Digital Mathematics Library

We present conditions sufficient for the weak convergence to a compound Poisson distribution of the distributions of the kth order statistics for extremes of moving minima in arrays of independent random variables.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:219191
@article{bwmeta1.element.bwnjournal-article-zmv25i1p19bwm,
     author = {Jadwiga Dudkiewicz},
     title = {Compound Poisson approximation for extremes of moving minima in arrays of independent random variables},
     journal = {Applicationes Mathematicae},
     volume = {25},
     year = {1998},
     pages = {19-28},
     zbl = {0902.60022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p19bwm}
}
Dudkiewicz, Jadwiga. Compound Poisson approximation for extremes of moving minima in arrays of independent random variables. Applicationes Mathematicae, Tome 25 (1998) pp. 19-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p19bwm/

[000] [1] A. D. Barbour, L. H. Y. Chen and W. L. Loh, Compound Poisson approximation for nonnegative random variables via Stein's method, Ann. Probab. 20 (1992), 1843-1866. | Zbl 0765.60015

[001] [2] E. R. Canfield and W. P. McCormick, Asymptotic reliability of consecutive k-out-of-n systems, J. Appl. Probab. 29 (1992), 142-155. | Zbl 0758.60093

[002] [3] O. Chryssaphinou and S. G. Papastavridis, Limit distribution for a consecutive k-out-of-n: F system, Adv. Appl. Probab. 22 (1990), 491-493. | Zbl 0713.60093

[003] [4] J. Dudkiewicz, Asymptotic of extremes of moving minima in arrays of independent random variables, Demonstratio Math. 29 (1996), 715-721. | Zbl 0879.60054

[004] [5] S. G. Papastavridis, A limit theorem for the reliability of a consecutive-k-out-of-n system, Adv. Appl. Probab. 19 (1987), 746-748. | Zbl 0626.60086

[005] [6] R. J. Serfling, A general Poisson approximation theorem, Ann. Probab. 3 (1975), 726-731. | Zbl 0321.60018

[006] [7] A. M. Zubkov, Estimates for sums of finitely dependent indicators and for the time of first occurrence of a rare event, Probabilistic Problems of Discrete Mathematics, Trudy Mat. Inst. Steklov. 177 (1986), 33-46, 207 (in Russian). | Zbl 0605.60034