We consider some fundamental concepts of mathematical statistics in the Bayesian setting. Sufficiency, prediction sufficiency and freedom can be treated as special cases of conditional independence. We give purely probabilistic proofs of the Basu theorem and related facts.
@article{bwmeta1.element.bwnjournal-article-zmv25i1p113bwm, author = {Konrad Furma\'nczyki and Wojciech Niemiro}, title = {Sufficiency in bayesian models}, journal = {Applicationes Mathematicae}, volume = {25}, year = {1998}, pages = {113-120}, zbl = {0907.62006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p113bwm} }
Furmańczyki, Konrad; Niemiro, Wojciech. Sufficiency in bayesian models. Applicationes Mathematicae, Tome 25 (1998) pp. 113-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i1p113bwm/
[000] J. R. Barra (1971), Notions fondamentales de statistique mathématique, Dunod, Paris. | Zbl 0257.62004
[001] D. Basu (1953), On statistics independent of a complete sufficient statistic, Sankhyā 15, 377-380 and 20 (1958), 223-226. | Zbl 0068.13401
[002] Y. S. Chow and H. Teicher (1988), Probability Theory. Independence, Interchangeability, Martingales, Springer. | Zbl 0652.60001
[003] K. R. Parthasarathy (1980), Introduction to Probability and Measure. | Zbl 0395.28001
[004] K. Takeuchi and M. Takahira (1975), Characterizations of prediction sufficiency (adequacy) in terms of risk functions, Ann. Statist. 3, 1018-1024. | Zbl 0333.62010
[005] E. N. Torgensen (1977), Prediction sufficiency when the loss function does not depend on the unknown parameter, ibid. 5, 155-163.
[006]