Clarke’s generalized derivative is studied as a function on the Banach algebra Lip(X,d) of bounded Lipschitz functions f defined on an open subset X of a normed vector space E. For fixed and fixed the function is continuous and sublinear in . It is shown that all linear functionals in the support set of this continuous sublinear function satisfy Leibniz’s product rule and are thus point derivations. A characterization of the support set in terms of point derivations is given.
@article{bwmeta1.element.bwnjournal-article-zmv24i4p465bwm, author = {Vladimir Demyanov and Diethard Pallaschke}, title = {Point derivations for Lipschitz functions andClarke's generalized derivative}, journal = {Applicationes Mathematicae}, volume = {24}, year = {1997}, pages = {465-474}, zbl = {0916.49013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p465bwm} }
Demyanov, Vladimir; Pallaschke, Diethard. Point derivations for Lipschitz functions andClarke's generalized derivative. Applicationes Mathematicae, Tome 24 (1997) pp. 465-474. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p465bwm/
[000] R. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403. | Zbl 0073.39601
[001] F. H. Clarke, Optimization and Nonsmooth Analysis, CRM, Université de Montréal, 1989. | Zbl 0727.90045
[002] N. Dunford and J. T. Schwartz, Linear Operators: Part I, Interscience Publ. New York, 1957.
[003] L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1954), 181-186. | Zbl 0064.10504
[004] D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272. | Zbl 0121.10204
[005] I. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. | Zbl 0067.35101