Point derivations for Lipschitz functions andClarke's generalized derivative
Demyanov, Vladimir ; Pallaschke, Diethard
Applicationes Mathematicae, Tome 24 (1997), p. 465-474 / Harvested from The Polish Digital Mathematics Library

Clarke’s generalized derivative f0(x,v) is studied as a function on the Banach algebra Lip(X,d) of bounded Lipschitz functions f defined on an open subset X of a normed vector space E. For fixed xX and fixed vE the function f0(x,v) is continuous and sublinear in fLip(X,d). It is shown that all linear functionals in the support set of this continuous sublinear function satisfy Leibniz’s product rule and are thus point derivations. A characterization of the support set in terms of point derivations is given.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:219186
@article{bwmeta1.element.bwnjournal-article-zmv24i4p465bwm,
     author = {Vladimir Demyanov and Diethard Pallaschke},
     title = {Point derivations for Lipschitz functions andClarke's generalized derivative},
     journal = {Applicationes Mathematicae},
     volume = {24},
     year = {1997},
     pages = {465-474},
     zbl = {0916.49013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p465bwm}
}
Demyanov, Vladimir; Pallaschke, Diethard. Point derivations for Lipschitz functions andClarke's generalized derivative. Applicationes Mathematicae, Tome 24 (1997) pp. 465-474. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p465bwm/

[000] R. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403. | Zbl 0073.39601

[001] F. H. Clarke, Optimization and Nonsmooth Analysis, CRM, Université de Montréal, 1989. | Zbl 0727.90045

[002] N. Dunford and J. T. Schwartz, Linear Operators: Part I, Interscience Publ. New York, 1957.

[003] L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1954), 181-186. | Zbl 0064.10504

[004] D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272. | Zbl 0121.10204

[005] I. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. | Zbl 0067.35101