Bayes optimal stopping of a homogeneous poisson process under linex loss function and variation in the prior
Męczarski, Marek ; Zieliński, Ryszard
Applicationes Mathematicae, Tome 24 (1997), p. 457-463 / Harvested from The Polish Digital Mathematics Library

A homogeneous Poisson process (N(t),t ≥ 0) with the intensity function m(t)=θ is observed on the interval [0,T]. The problem consists in estimating θ with balancing the LINEX loss due to an error of estimation and the cost of sampling which depends linearly on T. The optimal T is given when the prior distribution of θ is not uniquely specified.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:219185
@article{bwmeta1.element.bwnjournal-article-zmv24i4p457bwm,
     author = {Marek M\k eczarski and Ryszard Zieli\'nski},
     title = {Bayes optimal stopping of a homogeneous poisson process under linex loss function and variation in the prior},
     journal = {Applicationes Mathematicae},
     volume = {24},
     year = {1997},
     pages = {457-463},
     zbl = {0890.62065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p457bwm}
}
Męczarski, Marek; Zieliński, Ryszard. Bayes optimal stopping of a homogeneous poisson process under linex loss function and variation in the prior. Applicationes Mathematicae, Tome 24 (1997) pp. 457-463. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p457bwm/

[000] J. O. Berger (1994), An overview of robust Bayesian analysis, Test 3, 5-124. | Zbl 0827.62026

[001] A. DasGupta and W. J. Studden (1991), Robust Bayesian experimental design in normal linear models, Ann. Statist. 19, 1244-1256. | Zbl 0744.62099

[002] N. Ebrahimi, (1992), An optimal stopping time for a power law process, Sequential Anal. 11, 213-227. | Zbl 0766.62049

[003] M. Męczarski and R. Zieliński (1991), Stability of the Bayesian estimator of the Poisson mean under the inexactly specified gamma prior, Statist. Probab. Lett. 12, 329-333.

[004] M. Męczarski and R. Zieliński (1997), Stability of the posterior mean in linear models: an admissibility property of D-optimum and E-optimum designs, ibid., to appear. | Zbl 0902.62084

[005] S. Sivaganesan and J. O. Berger (1989), Ranges of posterior measures for priors with unimodal contaminations, Ann. Statist. 17, 868-889. | Zbl 0724.62032

[006] A. Zellner (1986), Bayesian estimation and prediction using asymmetric loss functions, J. Amer. Statist. Assoc. 81, 446-451. | Zbl 0603.62037