Let be any sequence of classical orthogonal polynomials of a discrete variable. We give explicitly a recurrence relation (in k) for the coefficients in , in terms of the coefficients σ and τ of the Pearson equation satisfied by the weight function ϱ, and the coefficients of the three-term recurrence relation and of two structure relations obeyed by .
@article{bwmeta1.element.bwnjournal-article-zmv24i4p445bwm, author = {Sa\"\i d Belmehdi and Stanis\l aw Lewanowicz and Andr\'e Ronveaux}, title = {Linearization of the product of orthogonal polynomials of a discrete variable}, journal = {Applicationes Mathematicae}, volume = {24}, year = {1997}, pages = {445-455}, zbl = {0891.33006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p445bwm} }
Belmehdi, Saïd; Lewanowicz, Stanisław; Ronveaux, André. Linearization of the product of orthogonal polynomials of a discrete variable. Applicationes Mathematicae, Tome 24 (1997) pp. 445-455. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p445bwm/
[000] R. Askey, Orthogonal Polynomials and Special Functions, Regional Conf. Ser. Appl. Math. 21, SIAM, Philadelphia, 1975.
[001] R. Askey and G. Gasper, Convolution structures for Laguerre polynomials, J. Anal. Math. 31 (1977), 48-68. | Zbl 0347.33006
[002] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan and S. M. Watt, Maple V Language Reference Manual, Springer, New York, 1991.
[003] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. | Zbl 0389.33008
[004] A. G. Garcia, F. Marcellán and L. Salto, A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math. 57 (1995), 147-162. | Zbl 0853.33009
[005] R. Koekoek and R. F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue, Fac. Techn. Math. Informatics, Delft Univ. of Technology, Rep. 94-05, Delft, 1994.
[006] J. Letessier, A. Ronveaux and G. Valent, Fourth order difference equation for the associated Meixner and Charlier polynomials, J. Comput. Appl. Math. 71 (1996), 331-341. | Zbl 0856.33008
[007] S. Lewanowicz, Recurrence relations for the connection coefficients of orthogonal polynomials of a discrete variable, ibid. 76 (1996), 213-229. | Zbl 0877.33003
[008] A. F. Nikiforov, S. K. Suslov and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991. | Zbl 0743.33001
[009] A. Ronveaux, S. Belmehdi, E. Godoy and A. Zarzo, Recurrence relations approach for connection coefficients-Applications to classical discrete orthogonal polynomials, in: Symmetries and Integrability of Difference Equations, D. Levi, L. Vinet and P. Winternitz (eds.), Centre de Recherches Mathématiques, CRM Proc. and Lecture Notes Ser. 9, Amer. Math. Soc., Providence, 1996, 321-337. | Zbl 0862.33006