Statistical estimation of higher-order spectral densities by means of general tapering
Baba Harra, M'hammed
Applicationes Mathematicae, Tome 24 (1997), p. 357-381 / Harvested from The Polish Digital Mathematics Library

Given a realization on a finite interval of a continuous-time stationary process, we construct estimators for higher order spectral densities. Tapering and shift-in-time methods are used to build estimators which are asymptotically unbiased and consistent for all admissible values of the argument. Asymptotic results for the fourth-order densities are given. Detailed attention is paid to the nth order case.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:219178
@article{bwmeta1.element.bwnjournal-article-zmv24i4p357bwm,
     author = {M'hammed Baba Harra},
     title = {Statistical estimation of higher-order spectral densities by means of general tapering},
     journal = {Applicationes Mathematicae},
     volume = {24},
     year = {1997},
     pages = {357-381},
     zbl = {1013.62502},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p357bwm}
}
Baba Harra, M'hammed. Statistical estimation of higher-order spectral densities by means of general tapering. Applicationes Mathematicae, Tome 24 (1997) pp. 357-381. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i4p357bwm/

[000] [1] M. Baba Harra, Estimation de densités spectrales d'ordre quatre avec lissage quelconque, Publication de l'URA 1378 Analyse et Modèles Stochastiques 2 (1995), 1-38.

[001] [2] M. Baba Harra, Estimation de densités spectrales d'ordre élevé, PhD thesis, Université de Rouen, 1996.

[002] [3] A. Blanc-Lapierre et R. Fortet, Théorie des Fonctions Aléatoires, Masson, Paris, 1953. | Zbl 0051.35702

[003] [4] P. Bloomfield, Fourier Analysis of Time Series: An Introduction, Wiley, New York, 1976. | Zbl 0353.62051

[004] [5] D. R. Brillinger, An introduction to polyspectra, Ann. Math. Statist. 36 (1965), 1351-1374. | Zbl 0211.49904

[005] [6] D. R. Brillinger, Time Series: Data Analysis and Theory, Holt, Rinehart and Winston, New York, 1975. | Zbl 0321.62004

[006] [7] D. R. Brillinger, The 1983 Wald memorial lectures: Some statistical methods for random process data from seismology and neurophysiology, Ann. Statist. 16 (1988), 1-54. | Zbl 0637.62089

[007] [8] D. R. Brillinger and M. Rosenblatt, Asymptotic theory of estimates of k-th order spectra, in: B. Harris (ed.), Advanced Seminar on Spectral Analysis of Time Series, Wiley, New York, 1967, 153-231.

[008] [9] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297-301. | Zbl 0127.09002

[009] [10] R. Dahlhaus, Spectral analysis with tapered data, J. Time Ser. Anal. 4 (1983), 163-175. | Zbl 0552.62068

[010] [11] R. Dahlhaus, Nonparametric spectral analysis with missing observations, Sankhyā 3 (1987), 347-367. | Zbl 0665.62094

[011] [12] S. Elgar and V. Chandran, Higher order spectral analysis of Chua's circuit, IEEE Trans. Circuit Systems, 40 (1993), 689-692. | Zbl 0844.58055

[012] [13] U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time Series, Wiley, New York, 1957. | Zbl 0080.12904

[013] [14] G. A. Isakova, Estimation spectrale d'ordre élevé pour les processus stationnaires avec lissage gaussien, C. R. l'Acad. Sci. République Sov. Biélorussie 3 (1989), 3-9.

[014] [15] R. H. Jones, Spectral analysis with regularly missed observations, Ann. Math. Statist. 33 (1962), 455-461. | Zbl 0114.34503

[015] [16] P. T. Kim, Estimation of product moments of a stationary stochastic process with application to estimation of cumulants and cumulant spectral densities, Canad. J. Statist. 17 (1989), 285-299. | Zbl 0685.62076

[016] [17] L. H. Koopmans, The Spectral Analysis of Time Series, Academic Press, New York, 1974. | Zbl 0289.62056

[017] [18] Le Fe Do, Strong consistency of an estimate of a moment function of fourth order of a stationary random process, Ukrain. Mat. Zh. 49 (1991), 354-358 (in Russian). | Zbl 0722.62055

[018] [19] V. P. Leonov and A. N. Shiryaev, On a method of calculation of semi-invariants, Theor. Probab. Appl. 4 (1959), 319-329. | Zbl 0087.33701

[019] [20] K. S. Lii and M. Rosenblatt, Cumulant spectral estimates: Bias and covariance, in: Limit Theorems in Probability and Statistics (Pécs, 1989), Colloq. Math. Soc. János Bolyai 57, North-Holland, 1990, 365-405.

[020] [21] K. S. Lii, M. Rosenblatt and C. W. Atta, Bispectral measurements in turbulence, J. Fluid Mech. 77 (1976), 45-62.

[021] [22] A. Preumont, Vibrations aléatoires et analyse spectrale, Presses Polytechniques et Universitaires Romandes, Lausanne, 1990.

[022] [23] M. B. Priestley, Spectral Analysis and Time Series, Academic Press, London, 1981.

[023] [24] M. Rosenblatt and J. Van Ness, Estimation of the bispectrum, Ann. Math. Statist. 36 (1965), 1120-1135. | Zbl 0135.19804

[024] [25] A. N. Shiryaev, Some problems in the spectral theory of higher-order moments, Theor. Probab. Appl. 5 (1961), 265-284. | Zbl 0109.36001

[025] [26] T. Subba Rao and M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture Notes in Statist. 24, Springer, New York, 1984. | Zbl 0543.62074

[026] [27] I. G. Žurbenko [I. G. Zhurbenko], The Spectral Analysis of Time Series, North-Holland, Amsterdam, 1986.