Optimal stopping time problems for a risk process where the number N(t) of losses up to time t is a general renewal process and the sequence of ’s represents successive losses are studied. N(t) and ’s are independent. Our goal is to maximize the expected return before the ruin time. The main results are closely related to those obtained by Boshuizen and Gouweleew [2].
@article{bwmeta1.element.bwnjournal-article-zmv24i3p335bwm, author = {El\.zbieta Ferenstein and Andrzej Sieroci\'nski}, title = {Optimal stopping of a risk process}, journal = {Applicationes Mathematicae}, volume = {24}, year = {1997}, pages = {335-342}, zbl = {1002.60536}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p335bwm} }
Ferenstein, Elżbieta; Sierociński, Andrzej. Optimal stopping of a risk process. Applicationes Mathematicae, Tome 24 (1997) pp. 335-342. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p335bwm/
[000] [1] F. A. Boshuizen and J. M. Gouweleew, A continuous-time job search model: general renewal processes, Report 9247/A, Econometric Institute, Erasmus University Rotterdam, 1992.
[001] [2] F. A. Boshuizen and J. M. Gouweleew, General optimal stopping theorems for semi-Markov processes, preprint, 1993.
[002] [3] M. H. A. Davis, Markov Models and Optimization, Chapman & Hall, London, 1993.
[003] [4] M. H. A. Davis, The representation of martingales of jump processes, SIAM J. Control Optim. 14 (1976), 623-638. | Zbl 0337.60048
[004] [5] E. Z. Ferenstein, A variation of Dynkin's stopping game, Math. Japon. 38 (1993), 371-379. | Zbl 0819.60049
[005] [6] E. Z. Ferenstein and E. G. Enns, A continuous-time Dynkin's stopping game: renewal processes case, to appear. | Zbl 0633.90106
[006] [7] R. S. Liptser and A. N. Shiryaev, Statistics of Stochastic Processes, Nauka, Moscow, 1974 (in Russian). | Zbl 0556.60003