Necessary and sufficient conditions for the existence of compactly supported -solutions for the two-dimensional two-scale dilation equations are given.
@article{bwmeta1.element.bwnjournal-article-zmv24i3p325bwm, author = {Jaros\l aw Kotowicz}, title = {On the existence of a compactly supported $L^{p}$-solution for two-dimensional two-scale dilation equations}, journal = {Applicationes Mathematicae}, volume = {24}, year = {1997}, pages = {325-334}, zbl = {0946.39009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p325bwm} }
Kotowicz, Jarosław. On the existence of a compactly supported $L^{p}$-solution for two-dimensional two-scale dilation equations. Applicationes Mathematicae, Tome 24 (1997) pp. 325-334. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p325bwm/
[000] [1] M. A. Berger and Y. Wang, Multidimensional two-scale dilation equations, in: Wavelets - A Tutorial in Theory and Applications, C. K. Chui (ed.), Wavelets 3, Academic Press, 1992, 295-323. | Zbl 0767.65002
[001] [2] D. Colella and C. Heil, The characterization of continuous, four-coefficient scaling functions and wavelets, IEEE Trans. Inform. Theory 30 (1992), 876-881. | Zbl 0743.42012
[002] [3] D. Colella and C. Heil, Characterization of scaling functions, I. Continuous solutions, J. Math. Anal. Appl. 15 (1994), 496-518. | Zbl 0797.39006
[003] [4] D. Colella and C. Heil, Dilation eqautions and the smoothness of compactly supported wavelets, in: Wavelets: Mathematics and Applications, J. J. Benedetto, M. W. Frazier (eds.), Stud. Adv. Math., CRC Press., 1994, 163-201. | Zbl 0882.42025
[004] [5] I. Daubechies and J. Lagarias, Two-scale difference equation I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), 1388-1410. | Zbl 0763.42018
[005] [6] I. Daubechies and J. Lagarias, Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals, ibid. 23 (1992), 1031-1079. | Zbl 0788.42013
[006] [7] T. Eirola, Sobolev characterization of solution of dilation equations, ibid. 23 (1992), 1015-1030. | Zbl 0761.42014
[007] [8] K. S. Lau and M. F. Ma, The regularity of -scaling functions, preprint. | Zbl 0894.42013
[008] [9] K. S. Lau and J. Wang, Characterization of -solutions for the two-scale dilation equations, SIAM J. Math. Anal. 26 (1995), 1018-1048. | Zbl 0828.42024