Some convergence acceleration processes for a class of vector sequences
Sedogbo, G.
Applicationes Mathematicae, Tome 24 (1997), p. 299-306 / Harvested from The Polish Digital Mathematics Library

Let (Sn) be some vector sequence, converging to S, satisfying Sn-Sϱnnθ(β0+β1n-1+β2n-2+...),0|ϱ|1,θ0, where β0(0),β1,... are constant vectors independent of n. The purpose of this paper is to provide acceleration methods for these vector sequences. Comparisons are made with some known algorithms. Numerical examples are also given.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:219171
@article{bwmeta1.element.bwnjournal-article-zmv24i3p299bwm,
     author = {G. Sedogbo},
     title = {Some convergence acceleration processes for a class of vector sequences},
     journal = {Applicationes Mathematicae},
     volume = {24},
     year = {1997},
     pages = {299-306},
     zbl = {0889.65003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p299bwm}
}
Sedogbo, G. Some convergence acceleration processes for a class of vector sequences. Applicationes Mathematicae, Tome 24 (1997) pp. 299-306. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p299bwm/

[000] [1] A. C. Aitken, On Bernoulli's numerical solution of algebraic equations, Proc. Roy. Soc. Edinburgh 46 (1926), 289-305. | Zbl 52.0098.05

[001] [2] S. Bhowmick, R. Bhattacharya and D. Roy, Iterations of convergence accelerating nonlinear transforms, Comput. Phys. Comm. 54 (1989), 31-46. | Zbl 0798.65006

[002] [3] C. Brezinski, Algorithmes d'Accélération de la Convergence, Etude Numérique, Editions Technip, Paris, 1978. | Zbl 0396.65001

[003] [4] C. Brezinski and M. Redivo Zaglia, Extrapolation Methods. Theory and Practice, Math. Stud. in Comput. Math. 2, North-Holland, 1991.

[004] [5] P. R. Graves-Morris, Extrapolation method for vector sequences, Numer. Math. 61 (1992), 475-487. | Zbl 0765.65004

[005] [6] B. M. Irons and R. C. Tuck, A version of the Aitken accelerator for computer iteration, Internat. J. Numer. Methods Engrg. 1 (1969), 275-277.

[006] [7] N. Osada, Extensions of Levin's transformations to vector sequences, Numer. Algorithms 2 (1992), 121-132. | Zbl 0759.65001

[007] [8] L. B. Rall, Convergence of the Newton process to multiple solutions, Numer. Math. 9 (1966), 23-37.

[008] [9] G. W. Reddien, Newton's method and high order singularities, Comput. Math. Appl. 5 (1979), 79-86. | Zbl 0436.65032

[009] [10] E. J. Weniger, On the derivation of iterated sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Comm. 64 (1991), 19-45.

[010] [11] J. Wimp, Sequence Transformations and their Applications, Academic Press, New York, 1981. | Zbl 0566.47018

[011] [12] P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math. Comp. 16 (1962), 301-322. | Zbl 0105.10302

[012] [13] P. Wynn, Transformations de séries à l'aide de l'ε-algorithme, C. R. Acad. Sci. Paris Sér. A 275 (1972), 1351-1353. | Zbl 0257.65005