A nonlinear mathematical model with distributed delay is proposed to describe the reaction of a human organism to a pathogen agent. The stability of the disease free state is analyzed, showing that there exists a large set of initial conditions in the attraction basin of the disease-free state whose border is defined as the immunological barrier.
@article{bwmeta1.element.bwnjournal-article-zmv24i3p289bwm, author = {I. Barradas}, title = {Immunological barrier for infectious diseases}, journal = {Applicationes Mathematicae}, volume = {24}, year = {1997}, pages = {289-297}, zbl = {0880.34077}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p289bwm} }
Barradas, I. Immunological barrier for infectious diseases. Applicationes Mathematicae, Tome 24 (1997) pp. 289-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p289bwm/
[000] [1] G. Bell, Prey-predator equations simulating an immune response, Math. Biosci. 16 (1973), 291-314. | Zbl 0253.92003
[001] [2] G. Bell, A. Perelson and G. Pimbley, Theoretical Immunology, Marcel Dekker, New York, 1978. | Zbl 0376.92001
[002] [3] C. Bruni, Immune response: a system approach, in: Theoretical Immunology, Marcel Dekker, New York, 1978, 379-414.
[003] [4] H. Freedman and J. A. Gatica, A threshold model simulating humoral immune response to replicating antigens, Math. Biosci. 37 (1977), 113-134. | Zbl 0365.92006
[004] [5] G. I. Marchuk, Mathematical Models in Immunology, Transl. Ser. in Math. Engineering, Optimization Software, Inc., Publ. Division, New York, 1983. | Zbl 0556.92006
[005] [6] O. A. Smirnova, Mathematical model of immunological response, Vestnik Moskov. Univ. Ser. Fiz. Astronom. 1975 (4), 32-49 (in Russian).