Limit cycles for vector fields with homogeneous components
Cima, A. ; Gasukk, A. ; Mañosas, F.
Applicationes Mathematicae, Tome 24 (1997), p. 281-287 / Harvested from The Polish Digital Mathematics Library

We study planar polynomial differential equations with homogeneous components. This kind of equations present a simple and well known dynamics when the degrees (n and m) of both components coincide. Here we consider the case nm and we show that the dynamics is more complicated. In fact, we prove that such systems can exhibit periodic orbits only when nm is odd. Furthermore, for nm odd we give examples of such differential equations with at least (n+m)/2 limit cycles.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:219169
@article{bwmeta1.element.bwnjournal-article-zmv24i3p281bwm,
     author = {A. Cima and A. Gasukk and F. Ma\~nosas},
     title = {Limit cycles for vector fields with homogeneous components},
     journal = {Applicationes Mathematicae},
     volume = {24},
     year = {1997},
     pages = {281-287},
     zbl = {0880.34032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p281bwm}
}
Cima, A.; Gasukk, A.; Mañosas, F. Limit cycles for vector fields with homogeneous components. Applicationes Mathematicae, Tome 24 (1997) pp. 281-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p281bwm/

[000] [1] J. Argémi, Sur les points singuliers multiples de systèmes dynamiques dans R2, Ann. Mat. Pura Appl. (4) 79 (1968), 35-69. | Zbl 0203.39802

[001] [2] A. Cima, A. Gasull and F. Ma nosas, Cyclicity of a family of vector fields, J. Math. Anal. Appl. 196 (1995), 921-937. | Zbl 0851.34027

[002] [3] D. Eisenbud and H. Levine, An algebraic formula for the degree of a C map germ, Ann. of Math. 106 (1977), 19-44. | Zbl 0398.57020

[003] [4] W. Fulton, Algebraic Curves. An Introduction to Algebraic Geometry, Benjamin, New York, 1969. | Zbl 0181.23901

[004] [5] A. M. Lyapunov, Stability of Motion, Math. Sci. Engrng. 30, Academic Press, New York, 1966. | Zbl 0161.06303

[005] [6] L. S. Pontryagin, On dynamical systems close to the Hamiltonian ones, Zh. Eksperiment. Teoret. Fiz. 4 (1934), 883-885 (in Russian).