A second axially-symmetric initial-boundary value problem of linear homogeneous isotropic micropolar elastodynamics in which the displacement and rotation take the forms , ((r,θ,z) are cylindrical coordinates; cf. [17]) is formulated in a pure stress language similar to that of [12]. In particular, it is shown how and can be recovered from a solution of the associated pure stress initial-boundary value problem, and how a singular solution corresponding to harmonic vibrations of a concentrated body couple in an infinite space can be obtained from the solution of a pure stress problem.
@article{bwmeta1.element.bwnjournal-article-zmv24i3p251bwm, author = {Janusz Dyszlewicz}, title = {Stress equations of motion of Ignaczak type for the second axisymmetric problem of micropolar elastodynamics}, journal = {Applicationes Mathematicae}, volume = {24}, year = {1997}, pages = {251-265}, zbl = {0883.73006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p251bwm} }
Dyszlewicz, Janusz. Stress equations of motion of Ignaczak type for the second axisymmetric problem of micropolar elastodynamics. Applicationes Mathematicae, Tome 24 (1997) pp. 251-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i3p251bwm/
[000] [1] S. Drobot, On Cosserat continua, Zastos. Mat. 12 (1971), 323-346. | Zbl 0227.73002
[001] [2] J. Dyszlewicz, Stress formulation of the second axially-symmetric problem of micropolar theory of elasticity, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 21 (1973), 45-56. | Zbl 0252.73002
[002] [3] J. Dyszlewicz, The stress and displacement functions for the second axisymmetric problem of micropolar elastostatics, Arch. Mech. 27 (1975), 393-404. | Zbl 0375.73003
[003] [4] J. Dyszlewicz, The problem of stress equations of motion of Ignaczak type. The axisymmetric and plane problems of micropolar elastodynamics, manuscript, IPPT PAN, Warszawa, 1987 (in Polish).
[004] [5] J. Dyszlewicz, Boundary and Initial-Boundary Value Problems for Micropolar Elastostatic and Elastodynamic Equations, WPW, Wrocław, 1990 (in Polish).
[005] [6] A. C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech. 15 (1966), 909-930. | Zbl 0145.21302
[006] [7] M. E. Gurtin, The Linear Theory of Elasticity, in: Encyclopedia of Physics, vol. 6a/2, Springer, Berlin, 1972.
[007] [8] I. S. Gradshteĭn and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products, Nauka, Moscow, 1971 (in Russian).
[008] [9] D. Iesan, On the plane coupled micropolar thermoelasticity, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 16 (1968), 379-384. | Zbl 0177.54701
[009] [10] D. Iesan, On the linear theory of micropolar elasticity, Internat. J. Engrg. Sci. 7 (1969), 1213-1220. | Zbl 0181.53806
[010] [11] J. Ignaczak, A completeness problem for stress equations of motion in the linear elasticity, Arch. Mech. 15 (1963), 225-234. | Zbl 0117.18306
[011] [12] J. Ignaczak, Tensorial equations of motion for elastic materials with microstructure, in: Trends in Elasticity and Thermoelasticity, Witold Nowacki Ann. Volume, Wolters-Noordhoff, Groningen, 1971, 90-111.
[012] [13] W. Kasprzak and B. Lysik, Dimensional Analysis, WNT, Warszawa, 1988 (in Polish).
[013] [14] V. D. Kupradze, T. G. Gegelya, M. O. Baskhelishvili and T. V. Burkhuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Nauka, Moscow, 1976 (in Russian).
[014] [15] J. Mikusiński, Operational Calculus, Pergamon, New York, 1959.
[015] [16] W. Nowacki, Theory of Elasticity, PWN, Warszawa, 1970 (in Polish). | Zbl 0211.28701
[016] [17] W. Nowacki, Theory of Asymmetric Elasticity, PWN, Warszawa, 1981 (in Polish). | Zbl 0601.73021
[017] [18] Z. Olesiak, Stress differential equations of the micropolar elasticity, Bull. Acad. Pol. Sci. Sér. Sci. Tech. 18 (1970), 177-184. | Zbl 0219.73001
[018] [19] I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972. | Zbl 0237.44001