Asymptotic properties of the kth largest values for semi-Pareto processes are investigated. Conditions for convergence in distribution of the kth largest values are given. The obtained limit laws are represented in terms of a compound Poisson distribution.
@article{bwmeta1.element.bwnjournal-article-zmv24i2p189bwm, author = {Magdalena Chrapek and Jadwiga Dudkiewicz and Wies\l aw Dziubdziela}, title = {On the limit distributions of kth order statistics for semi-pareto processes}, journal = {Applicationes Mathematicae}, volume = {24}, year = {1997}, pages = {189-193}, zbl = {0872.60039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i2p189bwm} }
Chrapek, Magdalena; Dudkiewicz, Jadwiga; Dziubdziela, Wiesław. On the limit distributions of kth order statistics for semi-pareto processes. Applicationes Mathematicae, Tome 24 (1997) pp. 189-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i2p189bwm/
[000] [1] B. C. Arnold and J. T. Hallett, A characterization of the Pareto process among stationary stochastic processes of the form = c min(,), Statist. Probab. Lett. 8 (1989), 377-380. | Zbl 0686.60029
[001] [2] J. Gani, On the probability generating function of the sum of Markov Bernoulli random variables, J. Appl. Probab. 19A (1982), 321-326. | Zbl 0488.60074
[002] [3] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1983. | Zbl 0518.60021
[003] [4] J. Pawłowski, Poisson theorem for non-homogeneous Markov chains, J. Appl. Probab. 26 (1989), 637-642. | Zbl 0685.60028
[004] [5] R. N. Pillai, Semi-Pareto processes, ibid. 28 (1991), 461-465. | Zbl 0727.60039
[005] [6] Y. H. Wang, On the limit of the Markov binomial distribution, ibid. 18 (1981), 937-942. | Zbl 0475.60050
[006] [7] H. C. Yeh, B. C. Arnold and C. A. Robertson, Pareto processes, ibid. 25 (1988), 291-301. | Zbl 0658.62101