Approximation of stochastic differential equations driven by α-stable Lévy motion
Janicki, Aleksander ; Michna, Zbigniew ; Weron, Aleksander
Applicationes Mathematicae, Tome 24 (1997), p. 149-168 / Harvested from The Polish Digital Mathematics Library

In this paper we present a result on convergence of approximate solutions of stochastic differential equations involving integrals with respect to α-stable Lévy motion. We prove an appropriate weak limit theorem, which does not follow from known results on stability properties of stochastic differential equations driven by semimartingales. It assures convergence in law in the Skorokhod topology of sequences of approximate solutions and justifies discrete time schemes applied in computer simulations. An example is included in order to demonstrate that stochastic differential equations with jumps are of interest in constructions of models for various problems arising in science and engineering, often providing better description of real life phenomena than their Gaussian counterparts. In order to demonstrate the usefulness of our approach, we present computer simulations of a continuous time α-stable model of cumulative gain in the Duffie-Harrison option pricing framework.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:219159
@article{bwmeta1.element.bwnjournal-article-zmv24i2p149bwm,
     author = {Aleksander Janicki and Zbigniew Michna and Aleksander Weron},
     title = {Approximation of stochastic differential equations driven by $\alpha$-stable L\'evy motion},
     journal = {Applicationes Mathematicae},
     volume = {24},
     year = {1997},
     pages = {149-168},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i2p149bwm}
}
Janicki, Aleksander; Michna, Zbigniew; Weron, Aleksander. Approximation of stochastic differential equations driven by α-stable Lévy motion. Applicationes Mathematicae, Tome 24 (1997) pp. 149-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i2p149bwm/

[000] R. J. Adler, G. Samorodnitsky and T. Gadrich (1993), The expected number of level crossings for stationary, harmonisable, symmetric, stable processes, Ann. Appl. Probab. 3, 553-575. | Zbl 0779.60034

[001] P. Billingsley (1968), Convergence of Probability Measures, Wiley, New York. | Zbl 0172.21201

[002] S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, M. Simons and H. E. Stanley (1993), Generalized Lévy walk model for DNA nucleotide sequences, Phys. Rev. E 47, 4514-4523.

[003] D. Duffie and J. M. Harrison (1993), Arbitrage pricing of Russian options and perpetual lookback options, Ann. Appl. Probab. 3, 641-651. | Zbl 0783.90009

[004] P. Embrechts and H. Schmidli (1994), Modelling of extremal events in insurance and finance, Math. Methods Oper. Res. 39, 1-34. | Zbl 0798.90024

[005] S. N. Ethier and T. G. Kurtz (1986), Markov Processes: Characterization and Convergence, Wiley, New York. | Zbl 0592.60049

[006] W. Feller (1971), An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York. | Zbl 0219.60003

[007] N. Ikeda and S. Watanabe (1981), Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam. | Zbl 0495.60005

[008] P. Jagers (1974), Aspect of random measures and point processes, in: Advances in Probability and Related Topics, Vol. 3, Dekker, New York, 1974, 306-364.

[009] A. Jakubowski, J. Mémin et G. Pages (1989), Convergence en loi des suites d’intégrales stochastiques sur l’espace D1 de Skorokhod, Probab. Theory Related Fields 81, 111-137. | Zbl 0638.60049

[010] A. Janicki and A. Weron (1994a), Simulation and Chaotic Behavior of α-Stable Stochastic Processes, Dekker, New York. | Zbl 0946.60028

[011] A. Janicki and A. Weron (1994b), Can one see α-stable variables and processes? Statist. Sci. 9, 109-126. | Zbl 0955.60508

[012] I. Karatzas and S. E. Shreve (1988), Brownian Motion and Stochastic Calculus, Springer, New York. | Zbl 0638.60065

[013] Y. Kasahara and M. Maejima (1986), Functional limit theorems for weighted sums of i.i.d. random variables, Probab. Theory Related Fields 72, 161-183. | Zbl 0567.60037

[014] Y. Kasahara and M. Maejima (1988), Weighted sums of i.i.i. random variables attracted to integrals of stable processes, ibid. 78, 75-96. | Zbl 0627.60039

[015] Y. Kasahara and S. Watanabe (1986), Limit theorems for point processes and their functionals, J. Math. Soc. Japan 38, 543-574. | Zbl 0624.60061

[016] Y. Kasahara and K. Yamada (1991), Stability theorem for stochastic differential equations with jumps, Stochastic Process. Appl. 38, 13-32. | Zbl 0733.60009

[017] O. Kella (1993), Parallel and tandem fluid networks with dependent Lévy inputs, Ann. Appl. Probab. 3, 682-695. | Zbl 0780.60072

[018] H. Kesten and G. C. Papanicolaou (1979), A limit theorem for turbulent diffusion, Comm. Math. Phys. 65, 97-128. | Zbl 0399.60049

[019] P. A. Kloeden and E. Platen (1992), The Numerical Solution of Stochastic Differential Equations, Springer, Heidelberg. | Zbl 0752.60043

[020] P. A. Kloeden, E. Platen and H. Schurz (1994), The Numerical Solution of SDE Through Computer Experiments, Springer, Berlin. | Zbl 0789.65100

[021] T. G. Kurtz and P. Protter (1991), Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab. 19, 1035-1070. | Zbl 0742.60053

[022] Z. Michna and I. Rychlik (1995), The expected number of level crossings for certain symmetric α-stable processes, Stochastic Models 11, 1-20. | Zbl 0813.60047

[023] E. Pardoux and D. Talay (1985), Discretization and simulation of stochastic differential equations, Acta Appl. Math. 3, 23-47. | Zbl 0554.60062

[024] K. R. Parthasarathy (1967), Probability Measures on Metric Spaces, Academic Press, New York and London. | Zbl 0153.19101

[025] P. Protter (1990), Stochastic Integration and Differential Equations-A New Approach, Springer, New York. | Zbl 0694.60047

[026] S. T. Rachev and G. Samorodnitsky (1993), Option pricing formula for speculative prices modelled by subordinated stochastic processes, Serdica 19, 175-190. | Zbl 0803.90013

[027] S. I. Resnick (1987), Extreme Values, Regular Variation, and Point Processes, Springer, New York. | Zbl 0633.60001

[028] G. Samorodnitsky and M. Taqqu (1994), Non-Gaussian Stable Processes: Stochastic Models with Infinite Variance, Chapman & Hall, London. | Zbl 0925.60027

[029] M. Shao and C. L. Nikias (1993), Signal processing with fractional lower order moments: stable processes and their applications, Proc. IEEE 81, 986-1010.

[030] L. Słomiński (1989), Stability of strong solutions of stochastic differential equations, Stochasic Process. Appl. 31, 173-202. | Zbl 0673.60065

[031] X. J. Wang (1992), Dynamical sporadicity and anomalous diffusion in the Lévy motion, Phys. Rev. A 45, 8407-8417.

[032] A. Weron (1984), Stable processes and measures: A survey, in: Probability Theory on Vector Spaces III, D. Szynal and A. Weron (eds.), Lecture Notes in Math. 1080, Springer, New York, 306-364.