The implicit generalized order complementarity problem and Leontief's input-output model
Isac, G. ; Kostreva, M.
Applicationes Mathematicae, Tome 24 (1997), p. 113-125 / Harvested from The Polish Digital Mathematics Library

We consider the Implicit Generalized Order Complementarity Problem and we use this mathematical model to study a nonlinear and conceptual generalization of Leontief's input-output economic model. We suppose that the economic system works with several technologies and the considered functions are not necessarily increasing.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:219156
@article{bwmeta1.element.bwnjournal-article-zmv24i2p113bwm,
     author = {G. Isac and M. Kostreva},
     title = {The implicit generalized order complementarity problem and Leontief's input-output model},
     journal = {Applicationes Mathematicae},
     volume = {24},
     year = {1997},
     pages = {113-125},
     zbl = {0865.90024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv24i2p113bwm}
}
Isac, G.; Kostreva, M. The implicit generalized order complementarity problem and Leontief's input-output model. Applicationes Mathematicae, Tome 24 (1997) pp. 113-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv24i2p113bwm/

[000] [1] Y. M. Bershchanskiĭ and M. V. Meerov, The complementarity problem: theory and methods of solution, Automat. Remote Control 44 Part I (1983), 687-710. | Zbl 0527.90095

[001] [2] P. Bod, On closed sets having a least element, in: Lecture Notes in Econom. and Math. Systems 177, Springer, 1976, 23-34. | Zbl 0348.90095

[002] [3] P. Bod, Sur un modèle non-linéaire de rapports interindustriels, RAIRO Rech. Opér. 11 (1977), 405-415. | Zbl 0375.90012

[003] [4] J. M. Borwein and M. A. H. Dempster, The linear order complementarity problem, Math. Oper. Res. 14 (1989), 534-558. | Zbl 0692.90096

[004] [5] R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, 1992.

[005] [6] A. Ebiefung and M. Kostreva, The generalized Leontief input-output model and its application to the choice of new technology, Ann. Oper. Res. 44 (1993), 161-172. | Zbl 0810.90017

[006] [7] E. A. Galperin, The cubic algorithm, J. Math. Anal. Appl. 112 (1985), 635-640. | Zbl 0588.65042

[007] [8] C. R. Glassey, A quadratic network optimization model for equilibrium simple commodity trade flow, Mat. Programming 14 (1978), 98-107. | Zbl 0392.90020

[008] [9] K. Glashoff and B. Werner, Inverse monotonicity of monotone L-operator with applications to quasilinear and free boundary value problems, J. Math. Anal. Appl. 72 (1979), 89-105. | Zbl 0436.47045

[009] [10] D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), 623-632. | Zbl 0635.47045

[010] [11] G. Isac, Problèmes de complementarité (en dimension infinie), Publ. Dépt. Math. Univ. Limoges, 1985.

[011] [12] G. Isac, Complementarity problem and coincidence equations on convex cones, Boll. Un. Mat. Ital. B 6 (1986), 925-943.

[012] [13] G. Isac, Complementarity Problems, Lecture Notes in Math. 1528, Springer, 1992.

[013] [14] G. Isac, Iterative methods for the general order complementarity problem, in: Approximation Theory, Spline Functions and Applications, S. P. Singh (ed.), Kluwer Acad. Publ., 1992, 365-380. | Zbl 0761.90091

[014] [15] G. Isac and M. Kostreva, The generalized order complementarity problem, J. Optim. Theory Appl. 71 (1991), 517-534. | Zbl 0795.90073

[015] [16] G. Isac and M. Kostreva, Kneser's theorem and the multivalued generalized order complementarity problem, Appl. Math. Lett. 4 (6) (1991), 81-85. | Zbl 0776.90081

[016] [17] L. G. Khanin, Kantorovich-Rubinshtein duality for Lipschitz spaces defined by differences of arbitrary order, Soviet Math. Dokl. 42 (1991), 220-224. | Zbl 0771.46017

[017] [18] A. Kufner, O. John and S. Fučík, Function Spaces, Noordhoff, 1977.

[018] [19] J. Łoś and M. W. Łoś (eds.), Mathematical Models in Economics, PWN and North-Holland, 1974.

[019] [20] J. Łoś and M. W. Łoś (eds.), Computing Equilibria: How and Why?, PWN and North-Holland, 1978.

[020] [21] L. Mathiesen, Computational experience in solving equilibrium models by a sequence of linear complementarity problems, Oper. Res. 33 (1985), 1225-1250. | Zbl 0583.90097

[021] [22] V. I. Opoĭtsev, A generalization of the theory of monotone and concave operators, Trans. Moscow Math. Soc. 2 (1979), 243-279.

[022] [23] J. S. Pang, I. Kaneko and W. P. Hallman, On the solution of some (parametric) linear complementarity problems with applications to portfolio selection, structural engineering and actuarial graduation, Math. Programming 16 (1979), 325-347. | Zbl 0399.90092

[023] [24] J. S. Pang and P. S. C. Lee, A parametric linear complementarity technique for the computation of equilibrium prices in a single commodity spatial model, ibid. 20 (1981), 81-102.

[024] [25] O. Paris, Revenue and cost uncertainty generalized mean-variance and the linear complementarity problem, Amer. J. Agricultural Econom. 61 (1979), 268-275.

[025] [26] A. L. Peressini, Ordered Topological Vector Spaces, Harper & Row, 1967. | Zbl 0169.14801

[026] [27] E. L. Peterson, The conical duality and complementarity of price and quality for multicommodity spatial and temporal network allocation problem, Discussion paper 207, Center for Mathematical Studies in Economics and Management Science, Northwestern Univ., 1976.

[027] [28] M. H. Schneider, Single-commodity spatial equilibria: a network complementarity approach, Ph.D. Thesis, Dept. Industrial Engineering and Management Sciences, Northwestern Univ., Evanston, Ill., 1984.

[028] [29] F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Lecture Notes in Math. 1445, Springer, Berlin, 1990. | Zbl 0709.35038

[029] [30] A. Tamir, Minimality and complementarity properties associated with Z-functions and M-functions, Math. Programming 7 (1974), 17-31. | Zbl 0291.90057

[030] [31] J. von Neumann, A model of general economic equilibrium, Rev. Econom. Stud. 13 (1945/1946), 1-9.

[031] [32] R. Wilson, Bilinear complementarity problem and competitive equilibria of piecewise linear economic model, Econometrica 46 (1978), 87-103. | Zbl 0372.90025

[032] [33] G. Wintgen, Indifferente Optimierungs Problem, Beitrag zur Internationalen Tagung, Mathematik und Kybernetik in der Ökonomie, Berlin, 1964, Konfe- renzprotokoll, Teil II, Akademie-Verlag, Berlin, 3-6.

[033] [34] J. C. Yao, A basic theorem of complementarity for the generalized variational-like inequality problem, J. Math. Anal. Appl. 158 (1991), 124-138; The generalized quasi-variational inequality problem with applications, ibid., 139-160.

[034] [35] Q. Zheng, Optimality conditions for global optimization (I) and (II), Acta Math. Appl. Sinica 1 (2, 3) (1985), 66-78 and 118-132.

[035] [36] Q. Zheng, Robust analysis and global optimization, Internat. J. Computers Math. Appl. 21 (6/7) (1991), 17-24. | Zbl 0768.49010