Though widely accepted, in nonparametric models admitting asymmetric distributions the sample median, if n=2k, may be a poor estimator of the population median. Shortcomings of estimators which are not equivariant are presented.
@article{bwmeta1.element.bwnjournal-article-zmv23i3p363bwm, author = {Ryszard Zieli\'nski}, title = {Estimating median and other quantiles in nonparametric models}, journal = {Applicationes Mathematicae}, volume = {23}, year = {1995}, pages = {363-370}, zbl = {0836.62028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p363bwm} }
Zieliński, Ryszard. Estimating median and other quantiles in nonparametric models. Applicationes Mathematicae, Tome 23 (1995) pp. 363-370. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p363bwm/
[000] P. J. Bickel and K. A. Doksum (1977), Mathematical Statistics. Basic Ideas and Selected Topics, Holden-Day. | Zbl 0403.62001
[001] B. M. Brown (1985), Median estimates and sign tests, in: Encyclopedia of Statistical Sciences, Vol. 5, Wiley.
[002] C. E. Davis and S. M. Steinberg (1985), Quantile estimation, in: Encyclopedia of Statistical Sciences, Vol. 7, Wiley.
[003] S. T. Gross (1985), Median estimation, inverse, in: Encyclopedia of Statistical Sciences, Vol. 5, Wiley.
[004] F. E. Harrell and C. E. Davis (1982), A new distribution-free quantile estimator, Biometrika 69, 635-640. | Zbl 0493.62038
[005] W. D. Kaigh and P. A. Lachenbruch (1982), A generalized quantile estimator, Comm. Statist. Theory Methods 11, 2217-2238. | Zbl 0499.62034
[006] E. L. Lehmann (1983), Theory of Point Estimation, Wiley. | Zbl 0522.62020
[007] W. Uhlmann (1963), Ranggrössen als Schätzfunktionen, Metrika 7 (1), 23-40. | Zbl 0243.62021
[008] R. Zieliński (1988), A distribution-free median-unbiased quantile estimator, Statistics 19 (2), 223-227. | Zbl 0643.62022