Growth and accretion of mass in an astrophysical model, II
Biler, Piotr ; Nadzieja, Tadeusz
Applicationes Mathematicae, Tome 23 (1995), p. 351-361 / Harvested from The Polish Digital Mathematics Library

Radially symmetric solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles in a bounded container are studied. Conditions ensuring either global-in-time existence of solutions or their finite time blow up are given.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:219137
@article{bwmeta1.element.bwnjournal-article-zmv23i3p351bwm,
     author = {Piotr Biler and Tadeusz Nadzieja},
     title = {Growth and accretion of mass in an astrophysical model, II},
     journal = {Applicationes Mathematicae},
     volume = {23},
     year = {1995},
     pages = {351-361},
     zbl = {0845.35011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p351bwm}
}
Biler, Piotr; Nadzieja, Tadeusz. Growth and accretion of mass in an astrophysical model, II. Applicationes Mathematicae, Tome 23 (1995) pp. 351-361. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p351bwm/

[000] [1] P. Biler, Growth and accretion of mass in an astrophysical model, Appl. Math. (Warsaw) 23 (1995), 179-189. | Zbl 0838.35105

[001] [2] P. Biler, Local and global solutions of a nonlinear nonlocal parabolic problem, in: Proc. of the Banach Center minisemester 'Nonlinear Analysis and Applications', to appear. | Zbl 0877.35054

[002] [3] P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math. 68 (1995), 229-339.

[003] [4] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, ibid. 67 (1994), 297-308. | Zbl 0832.35015

[004] [5] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. | Zbl 0817.35041

[005] [6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. | Zbl 0144.34903

[006] [7] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), 819-824. | Zbl 0746.35002

[007] [8] S. Karlin and H. M. Taylor, A Second Course in Stochastic Processes, Academic Press, New York, 1981.

[008] [9] O. A. Ladyženskaja [O. A. Ladyzhenskaya], V. A. Solonnikov and N. N. Ural'ceva [N. N. Ural'tseva], Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1988.

[009] [10] T. Nadzieja, A model of a radially symmetric cloud of self-attracting particles, Appl. Math. (Warsaw) 23 (1995), 169-178. | Zbl 0839.35110

[010] [11] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355-391. | Zbl 0774.76069

[011] [12] G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math. 59 (1992), 251-272. | Zbl 0806.35134