Optimal solutions of multivariate coupling problems
Rüschendorf, Ludger
Applicationes Mathematicae, Tome 23 (1995), p. 325-338 / Harvested from The Polish Digital Mathematics Library

Some necessary and some sufficient conditions are established for the explicit construction and characterization of optimal solutions of multivariate transportation (coupling) problems. The proofs are based on ideas from duality theory and nonconvex optimization theory. Applications are given to multivariate optimal coupling problems w.r.t. minimal lp-type metrics, where fairly explicit and complete characterizations of optimal transportation plans (couplings) are obtained. The results are of interest even in the one-dimensional case. For the first time an explicit criterion is given for the construction of optimal multivariate couplings for the Kantorovich metric l1.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:219135
@article{bwmeta1.element.bwnjournal-article-zmv23i3p325bwm,
     author = {Ludger R\"uschendorf},
     title = {Optimal solutions of multivariate coupling problems},
     journal = {Applicationes Mathematicae},
     volume = {23},
     year = {1995},
     pages = {325-338},
     zbl = {0844.62047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p325bwm}
}
Rüschendorf, Ludger. Optimal solutions of multivariate coupling problems. Applicationes Mathematicae, Tome 23 (1995) pp. 325-338. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p325bwm/

[000] J. A. Cuesta-Albertos, L. Rüschendorf and A. Tuero-Diaz (1993), Optimal coupling of multivariate distributions and stochastic processes, J. Multivariate Anal. 46, 335-361. | Zbl 0788.60025

[001] H. Dietrich (1988), Zur c-Konvexität und c-Subdifferenzierbarkeit von Funktionalen, Optimization 19, 355-371.

[002] K. H. Elster und R. Nehse (1974), Zur Theorie der Polarfunktionale, ibid. 5, 3-21. | Zbl 0283.90049

[003] H. Kellerer (1984), Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete 67, 399-432. | Zbl 0535.60002

[004] M. Knott and C. Smith (1984), On the optimal mapping of distributions, J. Optim. Theory Appl. 43, 39-49. | Zbl 0519.60010

[005] V. I. Levin (1992), A formula for the optimal value in the Monge-Kantorovich problem with a smooth cost function and a characterization of cyclically monotone mappings, Math. USSR-Sb. 71, 533-548. | Zbl 0776.90086

[006] S. T. Rachev (1991), Probability Metric and the Stability of Stochastic Models, Wiley. | Zbl 0744.60004

[007] S. T. Rachev and L. Rüschendorf (1991), Solution of some transportation problems with relaxed or additional constraints, SIAM J. Control Optim., to appear. | Zbl 0797.60019

[008] A. W. Roberts and D. E. Varberg (1973), Convex Functions, Academic Press. | Zbl 0271.26009

[009] R. T. Rockafellar (1970), Convex Analysis, Princeton University Press. | Zbl 0193.18401

[010] L. Rüschendorf (1991a), Bounds for distributions with multivariate marginals, in: Proceedings: Stochastic Order and Decision under Risk, K. Mosler and M. Scarsini (eds.), IMS Lecture Notes 19, 285-310. | Zbl 0760.60019

[011] L. Rüschendorf (1991b), Fréchet-bounds and their applications, in: Advances in Probability Measures with Given Marginals, G. Dall'Aglio, S. Kotz and G. Salinetti (eds.), Kluwer Acad. Publ., 151-188.

[012] L. Rüschendorf and S. T. Rachev (1990), A characterization of random variables with minimum L^2-distance, J. Multivariate Anal. 32, 48-54. | Zbl 0688.62034

[013] C. Smith and M. Knott (1992), On Hoeffding-Fréchet bounds and cyclic monotone relations, J. Multivariate Anal. 40, 328-334. | Zbl 0745.62055

[014] M. M. Vainberg (1973), Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Wiley. | Zbl 0279.47022