We show that polynomials defined by recurrence relations with periodic coefficients may be represented with the help of Chebyshev polynomials of the second kind.
@article{bwmeta1.element.bwnjournal-article-zmv23i3p319bwm, author = {Bernhard Beckermann and Jacek Gilewicz and Elie Leopold}, title = {Recurrence relations with periodic coefficients and Chebyshev polynomials}, journal = {Applicationes Mathematicae}, volume = {23}, year = {1995}, pages = {319-323}, zbl = {0849.42014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p319bwm} }
Beckermann, Bernhard; Gilewicz, Jacek; Leopold, Elie. Recurrence relations with periodic coefficients and Chebyshev polynomials. Applicationes Mathematicae, Tome 23 (1995) pp. 319-323. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p319bwm/
[000] [1] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978. | Zbl 0389.33008
[001] [2] J. S. Geronimo and W. Van Assche, Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory 46 (1986), 251-283. | Zbl 0604.42023
[002] [3] J. S. Geronimo and W. Van Assche, Approximating the weight function for orthogonal polynomials on several intervals, ibid. 65 (1991), 341-371. | Zbl 0774.42015
[003] [4] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand, 1967.