Recurrence relations with periodic coefficients and Chebyshev polynomials
Beckermann, Bernhard ; Gilewicz, Jacek ; Leopold, Elie
Applicationes Mathematicae, Tome 23 (1995), p. 319-323 / Harvested from The Polish Digital Mathematics Library

We show that polynomials defined by recurrence relations with periodic coefficients may be represented with the help of Chebyshev polynomials of the second kind.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:219134
@article{bwmeta1.element.bwnjournal-article-zmv23i3p319bwm,
     author = {Bernhard Beckermann and Jacek Gilewicz and Elie Leopold},
     title = {Recurrence relations with periodic coefficients and Chebyshev polynomials},
     journal = {Applicationes Mathematicae},
     volume = {23},
     year = {1995},
     pages = {319-323},
     zbl = {0849.42014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p319bwm}
}
Beckermann, Bernhard; Gilewicz, Jacek; Leopold, Elie. Recurrence relations with periodic coefficients and Chebyshev polynomials. Applicationes Mathematicae, Tome 23 (1995) pp. 319-323. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p319bwm/

[000] [1] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978. | Zbl 0389.33008

[001] [2] J. S. Geronimo and W. Van Assche, Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory 46 (1986), 251-283. | Zbl 0604.42023

[002] [3] J. S. Geronimo and W. Van Assche, Approximating the weight function for orthogonal polynomials on several intervals, ibid. 65 (1991), 341-371. | Zbl 0774.42015

[003] [4] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand, 1967.