On a strongly consistent estimator of the squared L_2-norm of a function
Różański, Roman
Applicationes Mathematicae, Tome 23 (1995), p. 279-284 / Harvested from The Polish Digital Mathematics Library

A kernel estimator of the squared L2-norm of the intensity function of a Poisson random field is defined. It is proved that the estimator is asymptotically unbiased and strongly consistent. The problem of estimating the squared L2-norm of a function disturbed by a Wiener random field is also considered.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:219131
@article{bwmeta1.element.bwnjournal-article-zmv23i3p279bwm,
     author = {Roman R\'o\.za\'nski},
     title = {On a strongly consistent estimator of the squared L\_2-norm of a function},
     journal = {Applicationes Mathematicae},
     volume = {23},
     year = {1995},
     pages = {279-284},
     zbl = {0836.62073},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p279bwm}
}
Różański, Roman. On a strongly consistent estimator of the squared L_2-norm of a function. Applicationes Mathematicae, Tome 23 (1995) pp. 279-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p279bwm/

[000] R. Cairoli and J. B. Walsh (1975), Stochastic integrals in the plane, Acta Math. 134, 111-183. | Zbl 0334.60026

[001] C. W. Gardiner (1984), Handbook for Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics, Berlin.

[002] J. Koronacki and W. Wertz (1987), A global stopping rule for recursive density estimators, Statist. Planning Inference 20, 23-39. | Zbl 0850.62356

[003] H. Ramlau-Hansen (1983), Smoothing counting process intensities by means of kernel functions, Ann. Statist. 12, 453-466. | Zbl 0514.62050

[004] P. Reveš (1968), Laws of Large Numbers, Academic Press, New York.

[005] R. Różański (1992), Recursive estimation of intensity function of a Poisson random field, J. Statist. Planning Inference 33, 165-174. | Zbl 0770.62084

[006] E. F. Schuster (1974), On the rate of convergence of an estimate of a probability density, Scand. Actuar. J., 103-107. | Zbl 0285.62016

[007]