A kernel estimator of the squared -norm of the intensity function of a Poisson random field is defined. It is proved that the estimator is asymptotically unbiased and strongly consistent. The problem of estimating the squared -norm of a function disturbed by a Wiener random field is also considered.
@article{bwmeta1.element.bwnjournal-article-zmv23i3p279bwm, author = {Roman R\'o\.za\'nski}, title = {On a strongly consistent estimator of the squared L\_2-norm of a function}, journal = {Applicationes Mathematicae}, volume = {23}, year = {1995}, pages = {279-284}, zbl = {0836.62073}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p279bwm} }
Różański, Roman. On a strongly consistent estimator of the squared L_2-norm of a function. Applicationes Mathematicae, Tome 23 (1995) pp. 279-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p279bwm/
[000] R. Cairoli and J. B. Walsh (1975), Stochastic integrals in the plane, Acta Math. 134, 111-183. | Zbl 0334.60026
[001] C. W. Gardiner (1984), Handbook for Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics, Berlin.
[002] J. Koronacki and W. Wertz (1987), A global stopping rule for recursive density estimators, Statist. Planning Inference 20, 23-39. | Zbl 0850.62356
[003] H. Ramlau-Hansen (1983), Smoothing counting process intensities by means of kernel functions, Ann. Statist. 12, 453-466. | Zbl 0514.62050
[004] P. Reveš (1968), Laws of Large Numbers, Academic Press, New York.
[005] R. Różański (1992), Recursive estimation of intensity function of a Poisson random field, J. Statist. Planning Inference 33, 165-174. | Zbl 0770.62084
[006] E. F. Schuster (1974), On the rate of convergence of an estimate of a probability density, Scand. Actuar. J., 103-107. | Zbl 0285.62016
[007]