Let , i ≥ 1, be i.i.d. observable Cox processes on [a,b] directed by random measures Mi. Assume that the probability law of the Mi is completely unknown. Random techniques are developed (we use data from the processes ,..., to construct a partition of [a,b] whose extremities are random) to estimate L(μ,g) = E(exp(-(N(g) - μ(g))) | N - μ ≥ 0).
@article{bwmeta1.element.bwnjournal-article-zmv23i3p247bwm, author = {Emmanuelle Cr\'etois}, title = {Estimation of reduced Palm distributions by random methods for Cox processes with unknown probability law}, journal = {Applicationes Mathematicae}, volume = {23}, year = {1995}, pages = {247-259}, zbl = {0838.62090}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p247bwm} }
Crétois, Emmanuelle. Estimation of reduced Palm distributions by random methods for Cox processes with unknown probability law. Applicationes Mathematicae, Tome 23 (1995) pp. 247-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i3p247bwm/
[000] [1] S. Abou-Jaoude, Convergence et de certains estimateurs d’une densité de probabilité, thèse de doctorat d’état, Université Pierre et Marie Curie, 1979.
[001] [2] E. Crétois, Estimation de la densité moyenne d'un processus ponctuel de Poisson par des méthodes aléatoires, Congrès des XXIVèmes Journées de Statistique de Bruxelles, Mai 1992.
[002] [3] O. Kallenberg, Random Measures, 3rd ed., Akademie-Verlag, Berlin, and Academic Press, London.
[003] [4] A. F. Karr, State estimation for Cox processes with unknown probability law, Stochastic Process. Appl. 20 (1985), 115-131. | Zbl 0578.60049
[004] [5] A. F. Karr, Point Processes and Their Statistical Inference, Marcel Dekker, New York, 1986.